李东
副教授
研究方向:时序计量经济学,金融计量经济学,非线性时间序列分析,网络与大数据
地址:清华大学伟清楼203-B室
电话:010-62780177
邮箱:malidong@tsinghua.edu.cn
工作经历
- 2016/12-现今,清华大学统计学研究中心,副教授
- 2015/10-2016/12, 清华大学统计学研究中心,助理教授
- 2013/09-2015/10, 清华大学丘成桐数学科学中心,助理教授
教育背景
- 博士 香港科技大学 (2010)
- 硕士 中科院数学与系统科学研究院 (2005)
- 学士 曲阜师范大学 (2002)
访问经历
- 2019/07-2019/08,香港大学,访问学者
- 2018/07-2018/08,香港大学,访问学者
- 2017/07-2017/08,香港大学,访问学者
- 2015/10-2015/10,香港科技大学,访问学者
- 2013/02-2013/08,香港科技大学,访问学者
- 2012/05-2012/05,英国伦敦经济与政治学院,访问学者
- 2011/08-2013/02,美国爱荷华大学,博士后
- 2011/02-2011/07,香港科技大学,博士后
- 2005/09-2006/05,香港科技大学,研究助理
研究兴趣
- 时序计量经济学
- 金融计量经济学
- 非线性时间序列分析
- 网络与大数据分析
发表论文
- Luo, D., Zhu, K., Gong, H. and Li, D.* (2021+). Testing error distribution by kernelized Stein discrepancy in multivariate time series models. Journal of Business & Economic Statistics.
- Jiang, F.Y., Li, D., Li, W.K. and Zhu, K. (2021+). Testing and modelling for the structural change in covariance matrix time series with multiplicative form. Statistica Sinica.
- Li, D., Li, M. and Zeng, L. (2021+). Simulation and application of subsampling for threshold autoregressive moving-average models, Communications in Statistics: Simulation and Computation.
- Sun, L.Y. and Li, D.* (2021). Change-point detection for expected shortfall in time series. Journal of Management Science and Engineering 6, 324-335.
- Jiang, F.Y., Li, D. and Zhu, K. (2021). Adaptive inference for a semiparametric GARCH model. Journal of Econometrics 224, 306-329.
- Jiang, F.Y., Li, D. and Zhu, K. (2020). Non-standard inference for augmented double autoregressive models with null volatility coefficients. Journal of Econometrics 215, 165-183.
- Li, D. and Tong, H. (2020). On an absolute autoregressive model and skew symmetric distributions. Statistica 80, 177-198.
- Zhou, J., Li, D., Pan, R. and Wang, H. S. (2020). Network GARCH model. Statistica Sinica 30, 1723-1740.
- Gong, H. and Li, D.* (2020). On the three-step non-Gaussian quasi-maximum likelihood estimation of heavy-tailed double AR models. Journal of Time Series Analysis 41, 883-891.
- Li, D.* and Qiu, J.M. (2020). The marginal density of a TMA (1) process. Journal of Time Series Analysis 41, 476-484.
- Yang, Y. and Li, D.* (2020). Self-weighted LAD-based inference for heavy-tailed continuous threshold autoregressive models. Journal of Time Series Analysis 41,163-172.
- Li, D. and Zhu, K. (2020). Inference for asymmetric exponentially weighted moving average models. Journal of Time Series Analysis 41,154-162.
- Guo, S., Li, D. and Li, M.Y. (2019). Strict stationarity testing and GLAD estimation of double autoregressive models. Journal of Econometrics 211, 319-337.
- Li, D., Guo, S. and Zhu, K. (2019). Double AR model without intercept: An alternative to modeling nonstationarity and heteroscedasticity. Econometric Reviews 38, 319-331.
- Li, D., Ling, S., Tong, H. and Yang, G.R. (2019). On Brownian motion approximation of compound Poisson processes with applications to threshold models. Advances in Decision Sciences 23. Bridging.pdf
- Li, D. and Wu, W. (2018). Renorming volatilities in a family of GARCH models. Econometric Theory 34, 1370-1382.
- Liu, F., Li, D.* and Kang, X.M. (2018). Sample path properties of an explosive double AR model. Econometric Reviews 37, 484-490.
- Li, D., Zhang, X., Zhu, K. and Ling, S. (2018). The ZD-GARCH model: A new way to study heteroscedasticity. Journal of Econometrics 202, 1-17.
- Li, D. and Tong, H. (2016). Nested sub-sample search algorithm for estimation of threshold models. Statistica Sinica 26, 1543-1554.
- Li, D., Ling, S. and Zhang, R.M. (2016). On a threshold double autoregressive model. Journal of Business & Economic Statistics 34, 68-80.
- Li, D., Ling, S. and Zakoïan, J.-M. (2015). Asymptotic inference in multiple-threshold double autoregressive models. Journal of Econometrics 189, 415-427.
- Li, D., Li, M. and Wu, W. (2014). On dynamics of volatilities in nonstationary GARCH models. Statistics and Probability Letter 94, 86-90.
- Chen, M., Li, D.* and Ling, S. (2014). Non-stationarity and quasi-maximum likelihood estimation on a double autoregressive model. Journal of Time Series Analysis 35, 189-202.
- Chan, K.S., Li, D., Ling, S. and Tong, H. (2014). On conditionally heteroscedastic AR models with thresholds. Statistica Sinica 24, 625-652.
- Li, D. (2014). Weak convergence of the sequential empirical processes of residuals in TAR models. Science China: Mathematics 57, 173-180.
- Li, D., Chan, K.S. and Schilling, K.E. (2013). Nitrate concentration trends in Iowa’s rivers, 1998 to 2012: What challenges await nutrient reduction initiatives? Journal of Environmental Quality 42, 1822-1828.
- Li, D., Ling, S. and Li, W. K. (2013). Asymptotic theory on the least squares estimation of threshold moving-average models. Econometric Theory 29, 482-516.
- Wu, W., Li, D., Pan, S. and Chen, M. (2013) Three-regime mean reversion, TAR and its applications. Systems Engineering - Theory & Practice 33, 901-909.
- Li, D. (2012). A note on moving-average models with feedback. Journal of Time Series Analysis 33, 873-879.
- Li, D., Ling, S. and Tong, H. (2012). On moving-average models with feedback. Bernoulli 18, 735-745.
- Li, D. and Ling, S. (2012). On the least squares estimation of multiple-regime threshold autoregressive models. Journal of Econometrics 167, 240-253
- Li, D., Li, W. K. and Ling, S. (2011). On the least squares estimation of threshold autoregressive and moving-average models. Statistics and Its Interface 4, 183-196.
- Ling, S. and Li, D. (2008). Asymptotic inference for a non-stationary double AR(1) model. Biometrika 95, 257-263.
- Ling, S., Tong, H. and Li, D. (2007). Ergodicity and invertibility of threshold moving-average models. Bernoulli 13, 161-168.
在审论文
- Zhang, X., Li, D. and Tong, H. (2021). On the LSE of k-threshold-variable AR models.
- Zhang, X. and Li, D.* (2021). Smooth transition moving average models: Estimation, testing and computation.
- Yang, X. and Li, D.* (2021). Estimation of the empirical risk-return relation: A generalized-risk-in-mean model.
- Yu, C., Li, D. and Li, G.R. (2021). Simultaneous confidence bands for nonparametric Berkson errors-in -variables models
- Li, D., Tao, Y., Yang, Y. and Zhang, R.M. (2021). Maximum likelihood estimation for α-stable DAR models.
教 学
- 研究生课程
- 《时间序列分析》(2017/Spring)
- 《高等概率论 I》 (2016-21/Fall)
- 《多元统计分析》 (2014,2015/Spring)
- 《高等统计(学)》 (2014/Fall)
- 本科生课程
- 《应用时间序列分析》(2017,2018,2020,2022/Spring)
- 《初等概率论》 (2016/Fall)
- 《统计学引论》(2018/Fall, 2020-22/Spring with Dr. K. Deng)
- 《金融统计》 (2017, 2019/Spring)
- 《多元统计分析》(2021/Spring)
毕业学生
- 龚 欢 (2020, 清华大学优秀博士学位论文奖)
- 蒋斐宇 (2021, 第25届清华大学研究生“学术新秀”称号[共10人])
社会服务
- 北京大数据协会常务理事
- 北京应用统计学会理事
- 中国现场统计研究会计算统计分会理事
- 全国工业统计学教学研究会常务理事
- 全国工业统计学教学研究会数字经济与区块链技术协会常务理事
- 中国青年统计学家协会常务理事
- 中国概率统计学会副秘书长
组织会议
- Co-organizer, the international conference on Complex Time Series Modelling and Forecasting: Dynamic Network, Spatio-temporal Data, and Functional Processes, Tsinghua-Sanya International Mathematics Forum, Jan. 8-12, 2018. (with Professor Marc Genton at KAUST, Professor Eric D. Kolaczyk at Boston University, and Professor Qiwei Yao at the LSE)
- Organizer, Mini workshop on Big Data and Internet Finance, Tsinghua University, Dec. 18, 2016.
- Co-organizer, 2016 Tsinghua Symposium on Statistics and Data Science for Young Scholars, Tsinghua University, Dec. 9-11, 2016. (with Ke Deng and Lin Hou)
- Co-organizer, the international conference on Time Series Econometrics, Tsinghua-Sanya International Mathematics Forum, Dec. 18-20, 2015. (with Professor Shiqing Ling at HKUST and Professor Chuanzhong Chen at Hainan Normal University)
杂志审稿
- Applied Stochastic Models in Business and Industry,Annals of Statistics,Biometrika,Colombian Journal of Statistics,Communications in Statistics - Simulation and Computation,Computational Statistics & Data Analysis,European Journal of Industrial Engineering,Econometric Theory,Journal of Econometrics,Journal of the Korean Statistical Society,Journal of Risk and Financial Management,Metrika,Statistica Sinica,Stochastic Environmental Research and Risk Assessment,Statistics & Probability Letters,
在研项目
- 国家自然科学基金面上项目,"带有外生变量的非线性非平稳时间序列模型的统计推断及应用",主持,2020/01-2023/12.
- 国家自然科学基金面上项目,“高维时间序列的网络分析”,主持,2018/01-2021/12.
- 国家自然科学基金面上项目,“时间序列分析中几种假设检验问题的研究”,参与,2016/01-2019/12.
- 国家自然科学青年基金,“带有稳定新息的条件异方差模型的统计推断及其应用”, 主持,2015/01-2017/12.
个人简历:CV
Mathematics Genealogy
(https://genealogy.math.ndsu.nodak.edu/id.php?id=264334&fChrono=1)
—————————————————————————————————————
- Essentially, all models are wrong, but some are useful. —— Box, G. P.
- When solving a given problem, try to avoid solving a more general problem as an intermediate step. —— Vapnik, V.