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Compound Poisson processes (CPP) constitute a fundamental class of stochastic process-

es and a basic building block for more complex jump-diffusion processes such as the Lévy

processes. However, unlike those of a Brownian motion (BM), distributions of functionals,

e.g. maxima, passage time, argmin and others, of a CPP are often intractable. The first ob-

jective of this paper is to propose a new approximation of a CPP by a BM so as to facilitate

closed-form expressions in concrete cases. Specifically, we approximate, in some sense, a se-

quence of two-sided CPPs by a two-sided BM with drift. The second objective is to illustrate

the above approximation in applications, such as the construction of confidence intervals of

threshold parameters in threshold models, which include the threshold regression (also called

two-phase regression or segmentation) and numerous threshold time series models. We con-

duct numerical simulations to assess the performance of the proposed approximation. We

illustrate the use of our approach with a real data set.

1. Introduction. In many statistical problems, especially those associated with change points,

we often have to derive the distributions of functionals of a compound Poisson process (CPP). Ex-

amples include the estimation of the location of a discontinuity in density (e.g., Chernoff and Rubin

(1956)), and the estimation of thresholds in threshold regression, also called two-phase regression

or segmentation (e.g., Koul and Qian (2002), Seijo and Sen (2011) and Yu (2012, 2015)), threshold

autoregressive (TAR) models (e.g., Chan (1993), Tsay (1989, 1998), Gonzalo and Pitarakis (2002)

and Li and Ling (2012)), threshold double autoregressive (TDAR) models (e.g., Li, Ling and Zaköıan

(2015) and Li, Ling and Zhang (2016)), conditionally heteroscedastic AR models with thresholds

(T-CHARM) (e.g., Chan, et al. (2014)), threshold moving-average (TMA) models (e.g., Li, Ling and

Li (2013)), threshold autoregressive moving-average (TARMA) models (e.g., Li, Li and Ling (2011)),

and others. However, it is typically difficult to derive their distributions in closed-form.

To circumvent the difficulty, an important approach is to approximate the CPP by a Brownian

Keywords: Brownian motion, compound Poisson process, TAR, TARMA, TCHARM, TDAR, TMA, threshold re-

gression.
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motion (BM) in some sense because the situation is much more tractable in the latter. See, e.g.,

Stryhn (1996). The primary objective of this paper is to introduce a new approximation of

P(z) = I(z < 0)

N1(−z)∑
k=1

ζ
(1)
k + I(z ≥ 0)

N2(z)∑
k=1

ζ
(2)
k , z ∈ R,(1.1)

where {N1(z), z ≥ 0} and {N2(z), z ≥ 0} are independent Poisson processes with rates λ1 and λ2,

respectively, {ζ(1)k : k ≥ 1} and {ζ(2)k : k ≥ 1} are independent and identically distributed (i.i.d.)

sequences with Eζ
(i)
1 > 0 for i = 1, 2, respectively, and mutually independent. {Ni(z)} and {ζ(j)k } are

also mutually independent. Throughout the paper, these assumptions are always supposed to hold.

This paper is organized as follows. We state the main results in Section 2. In Section 3, we describe

some important applications in threshold models. In Section 4, we assess the efficacy of the theoretical

results of approximation by numerical simulations. A real data set is also included. All proofs of

Theorems are in the online supplementary material.

2. Main results. Using the parameterizing technique (e.g. Kushner (1984) and Skorokhod, Hop-

pensteadt and Salehi (2002)), we introduce a new parameter γ > 0 to re-parameterize (1.1) to

{Pγ(z) : z ∈ R} to

Pγ(z) = I(z < 0)

N1(|z|/γ)∑
k=1

ξ
(1)
k + I(z ≥ 0)

N2(z/γ)∑
k=1

ξ
(2)
k , z ∈ R.(2.1)

Denote

mγ = s- arg min
z∈R
Pγ(z),

where ‘s-argmin’ stands for the smallest argmin.

Thus, we embed (1.1) into a sequence of {Pγ(z) : z ∈ R}. Our interests are mγ and the limits of

{Pγ(z) : z ∈ R} as γ shrinks to zero under some suitable conditions. To this end, we first introduce

two assumptions.

Assumption 1. Eξ
(i)
1 = aiγ+o(γ) and E{ξ(i)1 }2 = biγ+o(γ) as γ → 0 for some positive constants

ai and bi, i = 1, 2.

Assumption 2. The rate of Ni(·) is λi > 0, i = 1, 2.

Note that the choice of λi is critical. For example, if the rate of the component Poisson process is

chosen as a function such that it tends to a deterministic continuous one, the CPP converges weakly to
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a CPP. See, e.g., Jacod and Shiryaev (2003). In our approach, λi’s are fixed constants. The following

theorem states that the sequence of stochastic processes {Pγ(z) : z ∈ R} can be approximated by a

two-sided BM with drift.

Theorem 1. Let =⇒ stand for weak convergence. Let D(R) denote the space of functions defined

on R, which are right continuous and have left limits. Let the space be endowed with the Skorokhod

topology. If Assumptions 1-2 hold, then, as γ → 0,

Pγ(z) =⇒W(z) in D(R),

where

W(z) =


λ1a1|z| −

√
λ1b1B1(|z|), if z ≤ 0,

λ2a2 z −
√
λ2b2 B2(z), if z > 0,

with B1(z) and B2(z) being two independent standard Brownian motions on [0,∞). Further, let T :=

arg minz∈RW(z). Then mγ =⇒ T .

In the literature, the density of T is readily available and has a closed form, which is given in the

following theorem; see Proposition 1 in Stryhn (1996).

Theorem 2. The probability density of T is given by

fT (x; ai, bi, λi) =


g(|x|; a1

√
λ1/b1, (a2/b2)

√
λ1b1 ), for x < 0,

g(x; a2
√
λ2/b2, (a1/b1)

√
λ2b2 ), for x ≥ 0,

where

g(x; θ1, θ2) = 2θ1(θ1 + 2θ2) exp{2θ2(θ1 + θ2)x}Φ(−(θ1 + 2θ2)
√
x)− 2θ21Φ(−θ1

√
x), x ≥ 0,

and Φ(·) is the standard normal distribution.

Corollary 1. Suppose that γ = Eξ
(1)
1 = Eξ

(2)
1 > 0, λ1 = λ2 := λ, and E{ξ(i)1 }2 = biγ + o(γ) as

γ → 0 for positive constants bi, i = 1, 2. Then

λmγ =⇒ T1 := arg min
z∈R

W∗(z),
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where

W∗(z) =


|z| −

√
b1B1(|z|), if z ≤ 0,

z −
√
b2 B2(z), if z > 0,

and the density of T1 is

fT1(x; b1, b2) =


g(|x|; 1/

√
b1,
√
b1/b2 ), for x < 0,

g(x; 1/
√
b2,
√
b2/b1 ), for x ≥ 0,

where g(·) is as in Theorem 2.

Corollary 2. Suppose that γ = Eξ
(1)
1 = Eξ

(2)
1 > 0, λ1 = λ2 := λ, and E{ξ(1)1 }2 = E{ξ(2)1 }2 =

bγ + o(γ) as γ → 0 for some positive constant b. Then

4λmγ

b
=⇒ T2,

where T2 has the density

fT2(x) =
3

2
Φ
(
− 3

2

√
|x|
)
e|x| − 1

2
Φ
(
− 1

2

√
|x|
)
.(2.2)

Thus, Theorem 2 includes the density (2.2) as a special case. Yao (1987) used this special case in

his study of the approximation of the limiting distribution of the maximum likelihood estimate of

a change-point problem. The distribution of T2 has exponential tails; see Remark 1 in Yao (1987).

Note that Theorem 1 includes Theorem 1 of Hansen (2000) as a special case. Figure 1 displays the

density and the cumulative distribution function (CDF) of T2. From Figure 1, we can see that T2

is symmetric. Moreover, for our needs, it is easy to tabulate the quantiles of T2. For any given level

α ∈ (0, 1), denote by Qα the αth quantile of T2. Table 1 gives some commonly used quantiles.

Table 1
The quantiles of T2.

α 0.5 0.95 0.975 0.995
Qα 0 7.6873 11.0333 19.7665

3. Applications.
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Fig 1. The density (left panel) and the CDF (right panel) of T2.

3.1. Threshold regression model. To the best of our knowledge, the threshold regression model,

also called the two-phase regression model or the segmentation model, can be dated back to Quandt

(1958). Since then it has been widely used in economics and other areas. Asymptotics on statistical

inference for such models have been considered; see, e.g., Hinkley (1969, 1971), Hansen (2000), Koul

and Qian (2002), Seijo and Sen (2011) and Yu (2012, 2015).

We say (x′, y, z) follows a threshold regression model if

y =


x′β1 + σ1ε, if z ≤ r,

x′β2 + σ2ε, if z > r,

(3.1)

where y is a scalar dependent variable and x = (x1, ..., xp)
′ explanatory variables (or independent

variables), z is called the threshold variable and r the threshold parameter, and ε is the error with

zero mean and unit variance.

Suppose that {(x′i, yi, zi)} is a random sample of size n from model (3.1) with the true parameter

θ0 = (β′10, β
′
20, r0)

′ and (σ10, σ20). Denote by θ̂n the least squares estimator (LSE) of θ0. Under some

conditions (e.g., Koul and Qian (2002)), we have

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),

where

P(z) = I(z ≤ 0)

N1(−z)∑
i=1

ζ
(1)
i + I(z > 0)

N2(z)∑
i=1

ζ
(2)
i .(3.2)
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Here, N1(·) and N2(·) are independent Poisson processes with the same rate π(r0), which is the value

of the density π(·) of z at r0, and where {ζ(1)k : k ≥ 1} is a sequence of i.i.d. random variables with

the same distribution as the one induced by

ζ(1) = {x′(β10 − β20)}2 + 2σ10ε{x′(β10 − β20)} given z = r−0 ,

and the sequence {ζ(2)k : k ≥ 1} by

ζ(2) = {x′(β10 − β20)}2 − 2σ20ε{x′(β10 − β20)} given z = r+0 .

Here, z = r−0 and z = r+0 denote convergence to r0 from below and from above respectively.

Clearly, Eζ(i) is a function of β10 − β20. To obtain an approximation of M− by Theorem 1 when

‖β10 − β20‖ is small, we can introduce a new parameter γ = Eζ(1) to re-parameterize the CPP (3.2).

Note that unlike Hansen (1997), ‖β10 − β20‖ is fixed and not sample-size dependent.

By the definitions of mγ and M−, we have mγ = γM−. Note that Eζ(1) = Eζ(2) = γ, E{ζ(1)}2 =

4σ210γ + o(γ) and E{ζ(2)}2 = 4σ220γ + o(γ). Then, by Corollary 1, it follows that

γπ(r0) n(r̂n − r0) T1,

where  means that T1 is a usable approximation of γπ(r0) n(r̂n − r0) in the distribution sense, and

the density of T1 is

fT1(x;σ10, σ20) =


g(−x; 1/(2σ10), σ10/(2σ

2
20)), for x < 0,

g(x; 1/(2σ20), σ20/(2σ
2
10)), for x ≥ 0.

In particular, if σ210 = σ220 := σ2, then, by Corollary 2,

γπ(r0)

σ2
n(r̂n − r0) T2.

In practice, π(·) can be estimated by the nonparametric kernel method. Then, on using the plug-

in method, an estimate π̂n(r̂n) of π(r0) can be obtained. An estimate of σ2 can be got from the

residuals. However, the estimate of γ is a little complicated since it is a conditional expectation, namely

γ = E({x′(β10 − β20)}2|z = r0). Of course, if x and z are independent, then γ is an unconditional

expectation. In this case, it is easy to estimate γ by γ̂n = n−1
∑n

i=1{x′i(β̂1n − β̂2n)}2. If they are not

independent, a good choice is to use the best linear predictor of {x′(β10 − β20)}2 based on z with

θ̂n in lieu of θ0 to approximate γ; see (3.7) in the following Subsection 3.3. Once the estimates of γ,

π(r0) and σ2 are obtained, we can construct confidence intervals of r0 by using the quantiles of T2.
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3.2. Threshold AR model. The TAR model is an important class of nonlinear time series models.

The idea of threshold in the time series context was initially conceived around 1976, first appeared

in Tong (1978) and was later formalized in Tong and Lim (1980). Fuller results can be found in

the monograph of Tong (1990). For history and future outlook, see, e.g., Tong (2011, 2015). Chan

(1993) is a significant contribution to the inference of TAR models. It is the first breakthrough in the

asymptotic theory of the LSE of the threshold parameter in discontinuous two-regime TAR models.

Other important contributions include Tsay (1989, 1998), Gonzalo and Pitarakis (2002), and others.

Li and Ling (2012) first established the asymptotic theory of the LSE in multiple-regime TAR models.

A time series {yt} is said to follow a two-regime TAR model of order p if it satisfies

yt =


y′t−1β10 + σ10εt, if yt−d ≤ r0,

y′t−1β20 + σ20εt, if yt−d > r0,

(3.3)

where yt−1 = (1, yt−1, ..., yt−p)
′, {εt} is a sequence of i.i.d. random variables with zero mean and unit

variance and εt independent of {yt−j : j ≥ 1}.
Suppose that {y1, ..., yn} is a sample from the TAR model (3.3). Denote by r̂n the LSE of r0. Under

Conditions 1-4 in Chan (1993) or Assumptions 3.1-3.4 in Li and Ling (2012), and by Theorem 3.3

in Li and Ling (2012), we have

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),

where the left and the right jump distributions in the two-sided CPP P(·) are induced by

ζ
(1)
t = {y′t−1(β10 − β20)}2 + 2σ10εt{y′t−1(β10 − β20)} given yt−d = r−0

and

ζ
(2)
t = {y′t−1(β10 − β20)}2 − 2σ20εt{y′t−1(β10 − β20)} given yt−d = r+0 ,

respectively. Both rates are the same, i.e., π(r0), which is the value of the density π(·) of yt at r0.

From the above expressions, we can set γ = E({y′t−1(β10 − β20)}2|yt−d = r0), which is a function

of β10 − β20. Note that when ‖β10 − β20‖ is small, the range of M− is large. In this case, we can use

Theorem 1 to approximate M−.

Note that E(ζ
(1)
t |yt−d = r0) = E(ζ

(2)
t |yt−d = r0) = γ, and E({ζ(1)t }2|yt−d = r0) = 4σ210γ + o(γ) and

E({ζ(2)t }2|yt−d = r0) = 4σ220γ + o(γ). Thus, by Corollary 1, we have

γπ(r0) n(r̂n − r0) T1(3.4)
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with

fT1(x;σ10, σ20) =


g(|x|; 1/(2σ10), σ10/(2σ

2
20) ), for x < 0,

g(x; 1/(2σ20), σ20/(2σ
2
10) ), for x ≥ 0.

In applications, in order to construct confidence intervals of r0 by (3.4), we must estimate π(r0)

and γ. Clearly, estimating π(·) is easy. For example, we can use the nonparametric kernel method

and then use the plug-in method to get an estimate π̂n(r̂n) of π(r0). However, it is rather difficult to

estimate γ directly since it is a conditional expectation. An easy and good choice is to use the best

linear predictor to replace it. Of course, the re-sampling method in Li and Ling (2012) is still helpful.

Now, by using Algorithms B and C in Li and Ling (2012), we can draw a new sample {y∗t } with

y∗i−d = r̂n for each y∗i and then use the new sample to estimate γ with β̂1n − β̂2n in lieu of β10 − β20.
In particular, we consider a simple discontinuous TAR(1) model:

yt = {β10I(yt−1 ≤ r0) + β20I(yt−1 > r0)}yt−1 + εt,

where the notation is the same as in model (3.3), except for var(εt) = σ2. In this case, the jumps are

unconditional and simple:

ζ
(1)
t = {r0(β10 − β20)}2 + 2r0(β10 − β20)εt

and

ζ
(2)
t = {r0(β10 − β20)}2 − 2r0(β10 − β20)εt.

Let γ = {r0(β10−β20)}2. Then, Eζ
(1)
t = Eζ

(2)
t = γ, E{ζ(1)t }2 = E{ζ(2)t }2 = 4σ2γ+o(γ). By Corollary

2, it follows that

γπ(r0)

σ2
n(r̂n − r0) T2.

In this simple case, we can estimate γ by γ̂n = {r̂n(β̂1n− β̂2n)}2 and π(r0) by π̂n(r̂n), a nonparametric

kernel estimate, and σ2 by σ̂2n = n−1
∑n

t=1 ε̂
2
t , where {ε̂t} is the residual based on the LSE. Thus,

NSn :=
γ̂n π̂n(r̂n)

σ̂2n
n(r̂n − r0)(3.5)

can be approximated by T2 when |r0(β10 − β20)| is small.
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3.3. Threshold MA model. The TMA model is an important class of threshold time series models.

It is a natural generalization of linear MA models. The linear MA model was first introduced by

Slutsky (1927) and since then it has been widely used in many areas such as business, economics,

etc. It has played a prominent role in the development of time series analysis. However, nonlinear

MA models have developed slowly and have been overshadowed by nonlinear AR models. The slow

development was mostly due to difficulties in statistical inference for general nonlinear MA models;

see Robinson (1977). To-date, studies on nonlinear MA models mainly focus on TMA ones; see, e.g.,

Ling and Tong (2005), Ling, Tong and Li (2007), Li and Li (2008), Li, Ling and Tong (2012) and Li

(2012). Recently, Li, Ling and Li (2013) studied the asymptotic theory of the LSE in TMA models

and succeeded in obtaining the limiting distribution of the estimated threshold for the first time in

the literature.

A time series {yt} is said to follow a TMA model of order 1 if it satisfies

yt = εt + [φ0I(yt−1 ≤ r0) + ψ0I(yt−1 > r0)]εt−1,

where {εt} is i.i.d. with mean zero and variance σ2ε ∈ (0,∞), and εt is independent of {yj : j < t}.
Let θ = (φ, ψ, r)′ denote the parameter and θ0 its true value.

Let θ̂n be the LSE of θ0. Li, Ling and Li (2013) showed that under their Assumptions 2.1-2.3

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),

where

P(z) = I(z ≤ 0)

N1(−z)∑
i=1

ζ
(1)
i + I(z > 0)

N2(z)∑
i=1

ζ
(2)
i .

Here, N1(·) and N2(·) are independent Poisson processes with the same rate π(r0), which is the value

of the density π(·) of yt at r0, and {ζ(1)k : k ≥ 1} is an i.i.d. random variable with the same distribution

as the one induced by

ζ(1) =(φ0 − ψ0)
2ε2t−1

∞∑
j=0

j−1∏
i=0

{φ20I(yt+i ≤ r0) + ψ2
0I(yt+i > r0)}

+ 2(φ0 − ψ0)εt−1

∞∑
j=0

εt+j

j−1∏
i=0

{−φ0I(yt+i ≤ r0)− ψ0I(yt+i > r0)}
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given yt−1 = r−0 . Similarly, for the sequence {ζ(2)k : k ≥ 1}, we have

ζ(2) =(φ0 − ψ0)
2ε2t−1

∞∑
j=0

j−1∏
i=0

{φ20I(yt+i ≤ r0) + ψ2
0I(yt+i > r0)}

− 2(φ0 − ψ0)εt−1

∞∑
j=0

εt+j

j−1∏
i=0

{−φ0I(yt+i ≤ r0)− ψ0I(yt+i > r0)}

given yt−1 = r+0 . Here, the convention
∏−1
i=0 ≡ 1 is adopted.

When |φ0 − ψ0| is small, that is when the threshold effect is small, we can approximate M− or

n(r̂n − r0) by Theorem 1. Note that, if |φ0 − ψ0|
.
= 0, then φ0

.
= ψ0. Thus,

γ = E(ζ(1)|yt−1 = r0) = E(ζ(2)|yt−1 = r0)

= (φ0 − ψ0)
2
∞∑
j=0

E

{
ε2t−1

j−1∏
i=0

[φ20I(yt+i ≤ r0) + ψ2
0I(yt+i > r0)]

∣∣∣∣∣yt−1 = r0

}
.
=

(φ0 − ψ0)
2E(ε2t−1|yt−1 = r0)

1−min(φ20, ψ
2
0)

and

E({ζ(1)}2|yt−1 = r0) = E({ζ(2)}2|yt−1 = r0) = 4σ2εγ + o(γ).

Therefore, by Corollary 2, it follows that

γπ(r0)

σ2ε
n(r̂n − r0) T2.(3.6)

In applications, π(r0) is readily estimated by the nonparametric kernel method, and σ2ε by the

residuals {ε̂t} based on the LSE. The real hard work is in estimating or approximating γ. The key point

is how to approximate E(ε2t |yt = r0). Here, we propose three ways to approximate this conditional

expectation. One is the re-sampling method of Li, Ling and Li (2013). Similar to high-order TAR

models in Subsection 3.2, we can draw a new sample satisfying the condition yt−1 = r̂n and then

calculate the conditional expectation. This procedure is complicated and needs more computations.

The second is to use nonparametric method to estimate it.

The third is to use the best linear predictor to replace E(ε2t |yt = r0) as it is simple relatively. Note

that the best linear predictor of Y based on X is

L(Y |X) = EY +
cov(X,Y )

var(X)
(X − EX).(3.7)
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For small |φ0−ψ0|, we can use εt+((φ0+ψ0)/2)εt−1 to approximate yt, i.e., yt
.
= εt+((φ0+ψ0)/2)εt−1.

Hence, we have the following approximation

E(ε2t |yt = r0)
.
= σ2ε +

κ3r0
σ2ε(1 + (φ0 + ψ0)2/4)

.

where κ3 = Eε3t . Therefore,{
σ̂2ε +

κ̂3r̂n

σ̂2ε(1 + (φ̂n + ψ̂n)2/4)

}
(φ̂n − ψ̂n)2 π̂n(r̂n)

σ̂2ε{1−min(φ̂2n, ψ̂
2
n)}

n(r̂n − r0)(3.8)

can be approximated by T2 by Corollary 2, where σ̂2ε = n−1
∑n

t=1 ε̂
2
t , κ̂3 = n−1

∑n
t=1 ε̂

3
t , and {ε̂t} is

the residual.

In particular, if εt is symmetric, then κ3 = 0 and in turn (3.8) reduces to

NSn :=
(φ̂n − ψ̂n)2 π̂n(r̂n)

1−min(φ̂2n, ψ̂
2
n)

n(r̂n − r0).(3.9)

3.4. Threshold ARMA model. The TARMA model is a natural extension of TAR and TMA mod-

els. Like linear ARMA models, TARMA model can provide a parsimonious form for high-order TAR

or high-order TMA models. Recently, Chan and Goracci (2019) studied the ergodicity of one-order

TARMA models. However, in the literature to-date, there are few results on the statistical inference

of TARMA models. Exceptions are Li and Li (2011) and Li, Li and Ling (2011), who considered the

LSE and established its asymptotic theory.

A time series {yt} is said to follow a TARMA model of order (1,1) if it satisfies

yt =


µ1 + φ1yt−1 + εt + ψ1εt−1, if yt−1 ≤ r,

µ2 + φ2yt−1 + εt + ψ2εt−1, if yt−1 > r,

where {εt} is i.i.d. with mean zero and variance σ2 ∈ (0,∞), and εt is independent of {yj : j < t}.
Let θ = (µ1, φ1, ψ1, µ2, φ2, ψ2, r)

′ be the parameter and its true value be θ0.

Li, Li and Ling (2011) showed that under their Assumptions 3.1-3.5

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),
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where the left and right jump distributions are induced by

ζ(1) =δ2t

∞∑
j=0

j−1∏
i=0

{ψ2
10I(yt+i ≤ r0) + ψ2

20I(yt+i > r0)}

+ 2δt

∞∑
j=0

εt+j

j−1∏
i=0

{−ψ10I(yt+i ≤ r0)− ψ20I(yt+i > r0)}

given yt−1 = r−0 , and

ζ(2) =δ2t

∞∑
j=0

j−1∏
i=0

{ψ2
10I(yt+i ≤ r0) + ψ2

20I(yt+i > r0)}

− 2δt

∞∑
j=0

εt+j

j−1∏
i=0

{−ψ10I(yt+i ≤ r0)− ψ20I(yt+i > r0)}

given yt−1 = r+0 , where δt = (µ10 − µ20) + (φ10 − φ20)r0 + (ψ10 − ψ20)εt−1.

When |(µ10−µ20) + (φ10−φ20)r0|+ |ψ10−ψ20| is small, we can approximate M− or n(r̂n− r0) by

Theorem 1. Note that

γ = E(ζ(1)|yt−1 = r−0 ) = E(ζ(2)|yt−1 = r+0 )

=
∞∑
j=0

E

{
δ2t

j−1∏
i=0

{ψ2
10I(yt+i ≤ r0) + ψ2

20I(yt+i > r0)
∣∣∣yt−1 = r0

}
.
=

E(δ2t |yt−1 = r0)

1−min(ψ2
10, ψ

2
20)

and

E({ζ(1)}2|yt−1 = r0) = E({ζ(2)}2|yt−1 = r0) = 4σ2γ + o(γ).

Therefore, by Corollary 2, it follows that

γπ(r0)

σ2
n(r̂n − r0) T2.(3.10)

Similar to the procedure described in Subsection 3.3, we can estimate γ, π(r0) and σ2. We omit

the detail.
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3.5. T-CHARM. To characterize the martingale difference structure implied in log-returns of

assets in financial time series, Chan, et al. (2014) proposed a simple yet versatile model, called

the conditional heteroscedastic AR model with thresholds (T-CHARM), which is a special case of

Rabemananjara and Zaköıan (1993), Zaköıan (1994), Li and Ling (2012), Li, Ling and Zaköıan (2015)

and Li, Ling and Zhang (2016).

A simple T-CHARM is defined as

yt = σtεt, σ2t = σ210I(yt−1 ≤ r0) + σ220I(yt−1 > r0),

where {εt} is i.i.d. with zero mean and unit variance, σ210 6= σ220.

Chan, et al. (2014) developed asymptotic theory on the quasi-maximum likelihood estimation

(QMLE) of (σ210, σ
2
20, r0)

′ under some assumptions, and proved that

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),

where the left and the right jumps in P(z) are respectively

ζ
(1)
k = log

σ220
σ210

+
(σ210
σ220
− 1
)
ε2k

and

ζ
(2)
k = log

σ210
σ220

+
(σ220
σ210
− 1
)
ε2k.

Let γ = |σ210 − σ220|2/(σ410 + σ420). If γ is small, then we have

Eζ
(1)
1 = Eζ

(2)
1 = γ + o(γ),

E{ζ(1)1 }
2 = E{ζ(2)1 }

2 = 2(κ4 − 1)γ + o(γ),

where κ4 = Eε4t . Thus, by Corollary 2,

NSn :=
2γ̂nπ̂(r̂n)

κ̂4 − 1
n(r̂n − r0) T2,(3.11)

where γ̂n = |σ̂21n − σ̂22n|2/(σ̂41n + σ̂42n), κ̂4 = n−1
∑n

t=1 ε̂
4
t , {ε̂t} is the residuals based on the QMLE,

π̂(·) is the nonparametric kernel estimator of π(·).
For multiple-regime T-CHARM, approximations of the limiting distributions of the thresholds can

be obtained similarly.
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3.6. Threshold DAR model. The TDAR model is a significant extension of conditional heteroscedas-

tic models, including the threshold ARCH model of Rabemananjara and Zaköıan (1993) and Zaköıan

(1994). On TDAR models, recent work can be found in Li, Ling and Zaköıan (2015) and Li, Ling and

Zhang (2016).

A time series {yt} is said to follow a TDAR model of order (1, 1) if

yt =


φ0 + φ1yt−1 + εt

√
α0 + α1y2t−1, if yt−1 ≤ r,

ψ0 + ψ1yt−1 + εt

√
β0 + β1y2t−1, if yt−1 > r,

where {εt} is i.i.d. with zero mean and unit variance.

Li, Ling and Zaköıan (2015) and Li, Ling and Zhang (2016) studied the QMLE of TDAR model

and discussed their asymptotics. Under Assumptions 3.1-3.5 in Li, Ling and Zhang (2016), we have

n(r̂n − r0) =⇒M− := s- arg min
z∈R
P(z),

where the left and the right jumps in P(z) are respectively

ζ
(1)
k = log

β0 + β1r
2

α0 + α1r2
+
{(φ0 − ψ0) + (φ1 − ψ1)r + εk

√
α0 + α1r2}2

β0 + β1r2
− ε2k

and

ζ
(2)
k = log

α0 + α1r
2

β0 + β1r2
+
{(φ0 − ψ0) + (φ1 − ψ1)r − εk

√
β0 + β1r2}2

α0 + α1r2
− ε2k

For simplicity, we assume that εt ∼ N (0, 1) tentatively. Denote

γ =
{(β0 − α0) + (β1 − α1)r

2}2

(α0 + α1r2)2 + (β0 + β1r2)2
+

2{(φ0 − ψ0) + (φ1 − ψ1)r}2

(α0 + α1r2) + (β0 + β1r2)
.

By a simple calculation, we have

Eζ
(1)
1 = Eζ

(2)
1 = γ + o(γ),

E{ζ(1)1 }
2 = E{ζ(2)1 }

2 = 4γ + o(γ).

Thus, by Corollary 2,

γπ(r)n(r̂n − r) T2.

In applications, γ and π(r0) can be estimated by their sample counterparts. For high-order cases,

similar to high-order TAR models in Subsection 3.2, we can use the re-sampling method to estimate

γ.
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4. Simulation studies. In this section, we use simulations to assess the performance of the

approximation in Section 2. The TAR(1), TMA(1) models and T-CHARM are used as typical cases.

The error {εt} is supposed to be i.i.d. N (0, 1) for simplicity. For each model, the sample size is 500

and 2000 replications are used.

The TAR(1) model is defined as

yt = {0.5I(yt−1 ≤ 1.5) + 0.9I(yt−1 > 1.5)}yt−1 + εt.(4.1)

Figure 2 shows the histogram and the empirical CDF of NSn in (3.5) as well as those of T2 in (2.2),

from which we can see that the approximation performs well, even when the threshold effect is not

small with γ = |0.9− 0.5| = 0.4.

(a) The density

x

−20 −10 0 10 20

0.0

0.1

0.2

0.3

0.4

0.5

fT2
(x)

−20 −10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

(b) The CDF

x

FT2
(x)

FNSn
(x)

Fig 2. The histogram (a) and the empirical CDF (b) of NSn in (3.5) for TAR(1) model in (4.1), as well as the density
and CDF of T2 in (2.2).

Hansen (1997, 2000) was probably the first to adopt a BM approximation approach to handle

statistical inference in TAR models. His approach is based on a different setting from ours: he has

effectively replaced the TAR model by a sequence of TAR models indexed by the sample size n, with

n-dependent regression slopes, which coalesce (with a speed apparently not easily determined) as

n goes to infinity. Let us call the difference between the regression slopes of the two regimes the

threshold effect. On the other hand, for cases with fixed threshold effects, Li and Ling (2012) proposed

a re-sampling method to simulate M−. This method works well when the range of M− is not very

large, e.g., when the expectation of the jump is sufficiently large, implying a large threshold effect.

However, the range becomes very large when the expectation of the jump is small associated with a
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small threshold effect. In this case the re-sampling method is not so accurate. We now take up the

challenge of obtaining a BM approximation for the case with fixed (i.e. not n-dependent) but small

threshold effects.

To compare the performance of likelihood ratio method in Hansen (1997) and ours, we compute

the coverage probabilities of r0 at 90% and 95% levels, respectively. The estimator of π(·) is obtained

by two methods: one based on a nonparametric kernel method and the other the moving block

bootstrapping (MBB) method. For this and other bootstrapping methods for dependent data, see

Lahiri (2003). When the sample is small, the estimator π̂n(r̂n) may have a larger bias and will affect

the performance of the statistic NSn. In this case, we recommend the MBB method. Table 2 reports

the numerical results. Here, for each sample size, 1,000 replications are used. With each replication,

10 replicates are used for the MBB. From the table, we can see that Hansen’s method over-estimates

the coverage probability and becomes quite conservative when the sample size n is moderately large,

like that in Hansen (1997, 2000). On the other hand, our method based on MBB performs well across

all sample sizes; the method based on nonparametric kernels shows stable performance across all

n, with good coverage probability for n = 500, but not as well as the MBB method for smaller n.

Based on our experience, we recommend the nonparametric kernel method for large n, which will

save computing costs, and the MBB for smaller n.

Table 2
The coverage probabilities of r0 at 90% and 95% levels.

90% 95%
Hansen’s Our-ker Our-MBB Hansen’s Our-ker Our-MBB

n = 50 0.711 0.843 0.907 0.739 0.900 0.962
n = 100 0.912 0.818 0.899 0.934 0.871 0.952
n = 200 0.934 0.853 0.901 0.967 0.889 0.949
n = 500 0.935 0.895 - 0.964 0.948 -

For the TMA(1) model defined as

yt = εt + [0.6I(yt−1 ≤ 0) + 0.9I(yt−1 > 0)]εt−1.(4.2)

Figure 3 shows the histogram and the empirical CDF of NSn in (3.9) as well as those of T2 in (2.2),

from which we can see that the approximation performs well.

For the T-CHARM defined as

yt = σtεt, σ2t = 1I(yt−1 ≤ 0.5) + 2I(yt−1 > 0.5).(4.3)

Figure 4 shows that the performance of approximation is good. Here, the ratio κ := σ22/σ
2
1 = 2. When
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(a) The density
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Fig 3. The histogram (a) and the empirical CDF (b) of NSn in (3.9) for TMA(1) model in (4.2), as well as the density
and CDF of T2 in (2.2).
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Fig 4. The histogram (a) and the empirical CDF (b) of NSn in (3.11) for T-CHARM model in (4.3), as well as the
density and CDF of T2 in (2.2).
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(a) The density
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Fig 5. The histogram (a) and the empirical CDF (b) of NSn in (3.11) for T-CHARM model in (4.4), as well as the
density and CDF of T2 in (2.2).

κ increases, the performance of approximation may deteriorate. For example, consider a T-CHARM

model defined as

yt = σtεt, σ2t = 1I(yt−1 ≤ 0.5) + 6I(yt−1 > 0.5).(4.4)

Here, the ratio κ = 6.

Figure 5 shows the approximation for (4.4). Compared with Figure 4, the approximation is poorer

as expected. Of course, when κ > 5, simulating a CPP will generally result in a better approximation

for n(r̂n − r0).
Unfortunately, there are no theoretical results to guide us on the choice between the resampling

method in Li and Ling (2012) and our approximation method. However, our experience suggests

the following procedure in practice. First, we use the resampling method in Li and Ling (2012) to

simulate M−. If the simulated numerical range of M− is large, e.g., bigger than 50, then we use our

approximation method instead.

5. An empirical example. The unemployment rate is an important index in measuring eco-

nomic activity. Hansen (1997) explored the presence of nonlinearities in the business cycle through

the use of a TAR model for U.S. unemployment rate among males age 20 and over. The sample is

monthly from January 1959 through July 1996. There are 451 observations in total over the period,

which is plotted in Figure 6.
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Fig 6. Unemployment rate, Men 20+ years.

Let {yt} be the rate. Hansen (1997) suggests the following fitted model

4yt =


φ0 +

12∑
i=1

φi4yt−i + σ1εt, if yt−1 − yt−12 ≤ 0.302,

ψ0 +
12∑
i=1

ψi4yt−i + σ2εt, if yt−1 − yt−12 > 0.302,

(5.1)

where 4yt = yt−yt−1, σ21 = 0.1542, σ22 = 0.1872, and the estimates of the coefficients are summarized

in Table 3. For more details, including the standard errors and 95% confidence intervals of the

estimated coefficents, see Table 5 in Hansen (1997).

Table 3
TAR estimates for unemployment rate.

yt−1 − yt−12 ≤ 0.302

Variable Intercept 4yt−1 4yt−2 4yt−3 4yt−4 4yt−5 4yt−6

φ -.018 -.186 .084 .132 .165 .070 .027

Variable 4yt−7 4yt−8 4yt−9 4yt−10 4yt−11 4yt−12

φ .062 .044 -.031 -.057 .091 -.136

yt−1 − yt−12 > 0.302

Variable Intercept 4yt−1 4yt−2 4yt−3 4yt−4 4yt−5 4yt−6

ψ .086 .241 .241 .124 -.026 -.020 -.084

Variable 4yt−7 4yt−8 4yt−9 4yt−10 4yt−11 4yt−12

ψ -.151 -.035 .092 .103 -.114 -.412
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From (3.4), using the estimated coefficients, we can obtain the density of T1, which is displayed in

Figure 7. The 2.5% and 97.5% quantiles of T1 are −0.2477 and 0.3972, respectively.

−1.0 −0.5 0.0 0.5 1.0

0

5

10

15

20

The density of T1

Fig 7. The density of T1 related to model (5.1).

Now, using these quantiles, we can construct confidence intervals of the threshold parameter r0

by our nonparametric kernel method with the MBB. This method gives the 95% confidence interval

as [0.255, 0.332]. Here, the length of the moving block is 15 and the number of replicates is 50. The

corresponding result using Hansen’s method is [0.213, 0.340], where the likelihood ratio is adjusted

for residual heteroscedasticity by using a kernel estimator for the nuisance parameters. We note that

Hansen’s method has given a much wider confidence interval.

6. Conclusion and discussion. In this paper, we have developed an alternative approach to

approximate two-sided CPPs by two-sided BMs. Significantly, we address the issue with small but fixed

threshold effects. The new approach provides a simple yet efficacious tool to derive distributions of

some functionals of the sample paths of CPPs, thus rendering statistical inference of the key threshold

parameter in a threshold model, such as the construction of its confidence intervals, a practical

proposition. Further, our approach continues to apply to threshold regressive/autoregressive models

with multiple regimes since the distributions of all estimated threshold parameters are asymptotically

independent; see, e.g., Li and Ling (2012), Chan, et al. (2014), Li, Ling and Zaköıan (2015). Thus,

we can use our approach to construct confidence intervals for the thresholds one by one.

Our theory can be applied for other applied-oriented problems. For example, Hansen (1997, 2000)

proposed a likelihood ratio-based statistic LRn(r0) to test the null hypothesis H0 : r = r0 in threshold
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(auto)regression under his framework. However, under Tong’s framework, i.e., the threshold effect is

fixed, the limiting distribution of the related likelihood ratio-based statistic LRn(r0) is a functional of

two-sided compound Poisson process, which is hard to use for the same purpose. Our new theory can

provide a usable approximation on LRn(r0) and statistical inference for threshold can be realised.
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APPENDIX A: PROOF OF THEOREM 1

Write Pγ(z) in (2.1) as

Pγ(z) = I(z ≤ 0)P1,γ(z) + I(z > 0)P2,γ(z),

where

Pj,γ(z) =

Nj(z/γ)∑
k=1

ξ
(j)
k , z ≥ 0, j = 1, 2.

Since P1,γ(·) and P2,γ(·) are independent, it suffices to prove the weak convergence separately. Here,

to avoid unnecessary repetition, we only prove the weak convergence of P2,γ(z) in D[0,∞).

(i). Convergence of finite-dimensional distributions. For any 0 < z1 < ... < zm <∞, the character-



22 D. LI, S. LING, H. TONG AND G. YANG

istic function of (P2,γ(z1), ...,P2,γ(zm))

φγ(u1, ..., um) = E exp{iu1P2,γ(z1) + ...+ iumP2,γ(zm)}

=

m∏
k=1

E exp{ivkP2,γ(zk − zk−1)}

=

m∏
k=1

exp{−λγ−1(zk − zk−1)[1− φξ(2)1

(vk)]}

=
m∏
k=1

exp{−λγ−1(zk − zk−1)[−ivka2γ + v2kb2γ/2]}+ o(γ)

→
m∏
k=1

exp{λ(zk − zk−1)[ivka2 − v2kb2/2]}, γ → 0,

where vk = um+...+uk and the limit is the characteristic function of (λ2a2z1−
√
λ2b2B2(z1), ..., λ2a2zm−√

λ2b2B2(zm)). Thus, the finite-dimensional distribution of P2,γ(z) converges in distribution to that

of λ2a2z −
√
λ2b2B2(z) as γ → 0.

(ii). Aldous’s condition. Since every CPP is a Lévy process, by the strong Markov property of

Lévy process and stationary independent increment property of CPPs, we have

P2,γ(ργ + γ2)− P2,γ(ργ)
d
= P2,γ(γ2),

where {ργ} is a sequence of positive stopping times adapted to the process {P2,γ(z), z ∈ R} itself.

Note that

P2,γ(γ2) =

N2(γ)∑
k=1

ξ
(j)
k

and the Poisson process N2(·) is continuous in probability and N2(0) = 0 a.s. Then, as γ → 0, it

follows that P2,γ(γ2)→ 0 in probability. Thus, the Aldous’s condition holds.

By Theorem 16 in Pollard (1984)(p.134), we claim that

P2,γ(z) =⇒ λ2a2z −
√
λ2b2B2(z) as γ → 0.

Similarly, we can show the weak convergence of P1,γ(z). The proof of the first claim is complete.

We now prove the second claim. Note that Pγ(0) = 0; by the definition of mγ , for any A > 0, it
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follows that

P(|mγ | > A) =P(Pγ(mγ) ≤ 0, |mγ | > A)

≤P
(

inf
z>A
Pγ(z) ≤ 0, mγ > A

)
+ P

(
inf
z<−A

Pγ(z) ≤ 0, mγ < −A
)

=P
(

inf
z>A

N2(z/γ)∑
k=1

ξ
(2)
k ≤ 0, mγ > A

)
+ P

(
inf
z<−A

N1(−z/γ)∑
k=1

ξ
(1)
k ≤ 0, mγ < −A

)
:= I + II.

Since Pγ(z) has independent increments, we have

I = P

(
N2(A/γ)∑
k=1

ξ
(2)
k + inf

z>A

N2(z/γ)∑
k=N2(A/γ)+1

ξ
(2)
k ≤ 0, mγ > A

)

= P

(
N2(A/γ)∑
k=1

ξ
(2)
k + inf

z>0
P̃γ(z) ≤ 0, mγ > A

)
,
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where P̃γ(z)
d
= Pγ(z) and P̃γ(z) is independent of

∑N2(A/γ)
k=1 ξ

(2)
k and N2(A/γ). Hence,

I = P

(
sup
z>0

{
−P̃γ(z)

}
≥

N2(A/γ)∑
k=1

ξ
(2)
k , mγ > A

)

≤ P

(
sup
z>0

{
−P̃γ(z)

}
≥

N2(A/γ)∑
k=1

ξ
(2)
k , N2(A/γ) < Aλ2/(2γ)

)

+ P

(
sup
z>0

{
−P̃γ(z)

}
≥

N2(A/γ)∑
k=1

ξ
(2)
k , N2(A/γ) ≥ Aλ2/(2γ)

)
≤ P

(
N2(A/γ) < Aλ2/(2γ)

)
+ P

(
sup
z>0

{
−P̃γ(z)

}
≥

N2(A/γ)∑
k=1

ξ
(2)
k , N2(A/γ) ≥ Aλ2/(2γ),

N2(A/γ)∑
k=1

ξ
(2)
k <

1

2
N2(A/γ)Eξ

(2)
1

)

+ P

(
sup
z>0

{
−P̃γ(z)

}
≥

N2(A/γ)∑
k=1

ξ
(2)
k , N2(A/γ) ≥ Aλ2/(2γ),

N2(A/γ)∑
k=1

ξ
(2)
k ≥

1

2
N2(A/γ)Eξ

(2)
1

)
≤ P

(
N2(A/γ) < Aλ2/(2γ)

)
+ P

(
N2(A/γ) ≥ Aλ2/(2γ),

N2(A/γ)∑
k=1

ξ
(2)
k <

1

2
N2(A/γ)Eξ

(2)
1

)
+ P

(
sup
z>0

{
−P̃γ(z)

}
≥ 1

2
N2(A/γ)Eξ

(2)
1

)
.

First, note that N2(A/γ) ∼ Poisson(Aλ2/γ). Then, by Markov’s inequality, for large enough A > 0,

as γ → 0, we have

P
(
N2(A/γ) < Aλ2/(2γ)

)
≤ P

(
|N2(A/γ)−Aλ2/γ| > Aλ2/(2γ)

)
≤ Aλ2/γ

(Aλ2/(2γ))2
=

4γ

Aλ2
→ 0.

Second, by the property of the conditional expectation and Assumption 1, for large enough A > 0,
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as γ → 0,

P
(
N2(A/γ) ≥ Aλ2/(2γ),

N2(A/γ)∑
k=1

ξ
(2)
k <

1

2
N2(A/γ)Eξ

(2)
1

)

≤ P

(
N2(A/γ) ≥ Aλ2/(2γ),

∣∣∣N2(A/γ)∑
k=1

[ξ
(2)
k − Eξ

(2)
k ]
∣∣∣ > 1

2
N2(A/γ)Eξ

(2)
1

)

=
∞∑

m=Aλ2/(2γ)

P(N2(A/γ) = m)P

(∣∣∣ m∑
k=1

[ξ
(2)
k − Eξ

(2)
k ]
∣∣∣ > m

2
Eξ

(2)
1

)

≤
∞∑

m=Aλ2/(2γ)

P(N2(A/γ) = m)
mvar(ξ

(2)
1 )

(mEξ
(2)
1 /2)2

≤
∞∑

m=Aλ2/(2γ)

4m(b2γ + o(γ))

a22(mγ)2 + o((mγ)2)
P(N2(A/γ) = m)

≤ 8b2
a22

∞∑
m=Aλ2/(2γ)

1

mγ
P(N2(A/γ) = m)

=
8b2
a22

∞∑
m=Aλ2/(2γ)

m+ 1

m

1

(m+ 1)γ

1

Aλ2

(Aλ2)
m+1

γmm!
exp{−Aλ2/γ}

≤ 16b2
Aλ2a22

∞∑
m=Aλ2/(2γ)

(Aλ2/γ)m+1

(m+ 1)!
exp{−Aλ2/γ}

=
16b2
Aλ2a22

∞∑
m=Aλ2/(2γ)

P(N2(A/γ) = m+ 1)

=
16b2
Aλ2a22

P
(
N2(A/γ) ≥ Aλ2/(2γ) + 1

)
≤ 16b2
Aλ2a22

→ 0.
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Third, by Assumption 1, for large enough A > 0, as γ → 0, we have

P
(

sup
z>0

{
−P̃γ(z)

}
≥ 1

2
N2(A/γ)Eξ

(2)
1

)
= P

(
sup
z>0

{
−P̃γ(z)

}
≥ 1

2
N2(A/γ)Eξ

(2)
1 , N2(A/γ) < Aλ2/(2γ)

)
+ P

(
sup
z>0

{
−P̃γ(z)

}
≥ 1

2
N2(A/γ)Eξ

(2)
1 , N2(A/γ) ≥ Aλ2/(2γ)

)
≤ P

(
N2(A/γ) < Aλ2/(2γ)

)
+ P

(
sup
z>0

{
−P̃γ(z)

}
≥ 1

2
Aλ2/(2γ)Eξ

(2)
1

)
≤ P

(
sup
z>0

{
−P̃γ(z)

}
≥ Aλ2(a2γ + o(γ))

4γ

)
+ o(1)

≤ P
(

sup
z>0

{
−P̃γ(z)

}
≥ Aλ2a2

8

)
+ o(1)

= P

(
sup
n≥0

{
n∑
k=1

(
− ξ(2)k

)}
≥ Aλ2a2

8

)
+ o(1)

≤ 8

Aλ2a2
E

{
sup
n≥0

n∑
k=1

(
− ξ(2)k

)}
+ o(1)

≤ 8

Aλ2a2

E{ξ(2)1 }2

2Eξ
(2)
1

+ o(1)

=
8

Aλ2a2

b2 + o(1)

2a2 + o(1)
+ o(1)→ 0

by Theorem 4 (iii) in Chow and Teicher (1997)(p.398). Thus, I→ 0. Similarly, we have II→ 0.

Therefore, for large enough A > 0, as γ → 0, it follows that

P(|mγ | > A)→ 0,

that is, mγ = Op(1). By Theorem 3.2.2 in van der Vaart and Wellner (1996)(p.286), it follows that

mγ =⇒ T. The proof is concluded. �
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