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Conference Quick Guide 

November 1, 2017 (Thursday) 

 Morning: Arrive in Hangzhou 

 Noon: Arrive in Hangzhou 

 Afternoon: Register at the lobby of Hangzhou Huagang HNA Resort 

 Evening: Dinner at Tian Xiang Yuan (天香苑)，3rd floor. 

 

November 2, 2017 (Friday)  

 Morning: Opening ceremony & Technical sessions 

 Noon: Lunch buffet at Western Restaurant (恺撒宫)，1st floor. 

 Afternoon: Technical sessions 

 Evening: Welcome banquet at Tian Xiang Yuan (天香苑)， 3rd floor 

 

November 3, 2017 (Saturday) 

 Morning: Technical sessions & Ending mark 

 Noon: Lunch buffet at Western Restaurant (恺撒宫)，1st floor. 

 Evening: Dinner outside, 6：00pm waiting at hotel gate. 
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Local Information & Contact 

 

About the Conference Hotel 

 Hotel name: Hangzhou Huagang HNA Resort 

 Address: 1 Yanggongdi, Xihu Qu, Hangzhou Shi, Zhejiang Sheng, China, 

310007 

 Phone number: +86 571 8799 8899 

 
 

 

Local Transportation from Airport to the Conference Hotel 

 

 Taxi Fee: About 100 RMB 
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Currency Exchange 

 You are recommended to take enough Chinese Yuan with you from Japan, 

or exchange them in the airport. We do not guarantee that there is currency 

exchange service in the conference hotel. 

 

Local Contact 

 Name: Miss Qian Bao 

 Email: qianbao@mail.tsinghua.edu.cn 

 Mobile: +86 18101216283 

 

Registration Fee: 1200 RMB (Cash only) 

Hotel Price: 450 RMB/night (Receive credit card) 

 

 

Attractions of the City of Hangzhou 

 

1. West Lake West Lake is located to the west of Hangzhou, hence the name of " 

West Lake ". It is said that there are totally 36 "West Lakes "in China, the West Lake 

in Hangzhou is the most beautiful of 36 west lakes of the same name. It was a 

lagoon,once a small bay at the mouth of the Qiantang River. It was once the sea 

mouth that was blocked from the sea by river sediment and later became a lagoon 

lake. 

 

2. Lingyin Temple The Lingyin (Souls Retreat) Temple is one of the most famous 
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Buddhist Temples in China. It was constructed in 326AD at the foot of Lingyin 

Mountain by an Indian monk named Huili with a history of more than 1,600 years. 

The temple has the Front Hall, the Hall and the Hall of Herb Masters. China’s 

largest wood-carving of sitting Buddha Sakyamuni sits in the Magnificent Hall.The 

main hall is 33.6 meters in height. 

 

3. Hangzhou Bar Street Just like each major city has its own unique streets of 

pub, as a world famous leisure city, Hangzhou is not lagged behind in this regard. 

Among the numerous bar and pub streets in Hangzhou, Nanshan Lu (or Nanshan 

Road) Bar Street is one of the best in terms of location, architecture, quality and 

taste. 

 

4. Pedestrian Streets in Hangzhou Hangzhou has several walking only streets 

including Hefang Street (also named Qinghefang Street) and Zhongshan Road 

( also named "the Royal Street of the Southern Song Dynasty".  The two main 

traditional and cultural streets form a pedestrian block reconstructing the former 

prime time of the Southern Song Dynast(1127–1279) when Hangzhou served as 

its capital about 800 years ago. 

 

5. Hiking Trail at Precious Stone Hill There are numerous paths leading up the 

hill either from the lakeside, or from its north hillside. Precious Stone Hill (Baoshi 

Shan) is dotted with unique caves, Buddhist and Taoist shrines. The slender 
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Baochu Pagoda rises atop Precious Stone Hill where you can have a panoramic 

view of West Lake and the city as a whole, one of the two best West Lake viewing 

places with the other being Leifeng Pagoda. 

 

6. Grand Canal The Beijing-Hangzhou Grand Canal is one of the greatest ancient 

projects in China and is the longest man-made canal in world. It covers a total 

length of 1,794 kilometers, and meets five rivers of the Yangtze, Yellow, Huaihe, 

Haihe, and Qiantang rivers. On June 22,2014, China's Grand Canal was listed as 

World Heritage. The decision is announced at the 38th session of UNESCO's 

World Heritage committee in Doha, Qatar 

 

7. Song Dynasty Theme Park “Given me one day, I will give you back one 

thousand years,” so promises the marketing mastermind behind the largest scale 

Song Dynasty theme park in China. This slogan does indeed deliver on its promise; 

this is one of the places around Hangzhou to experience ancient China within the 

walls of the park. 
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Organizing Committee 

 

 

Chinese Side 
 

 

 

Japanese Side 

Ke Deng      

(Chair) 

Tsinghua University  Toshinari Kamakura

（Chair） 

Chuo University 

Weihu Cheng Beijing University of 

Technology 

 Hiroki Hashiguchi Tokyo University of 

Science 

Wei Gao Northeast Normal 

University 

 Manabu Iwasaki Seikei University 

Zhi Geng Peking University  Masahiro Kuroda Okayama University of 

Science 

Qihua Wang Chinese Academy of 

Sciences 

 Yuichi Mori Okayama University of 

Science 

Chongqi Zhang Guangzhou University  Shigekazu Nakagawa Okayama University of 

Science 

Lixin Zhang Zhejiang University  Michiko Watanabe Keio University 

Qiang Zhao Shandong Normal 

University 

 Kazunori Yamaguchi Rikkyo University 

Wensheng Zhu Northeast Normal 

University 

   

 

 

 

 

 



7 

 

Schedule for November 2, 2017 (Thursday) 

Yunqi Hall (云栖厅)    3rd floor 

 

08:20-08:30 Opening Ceremony 

Chair: Ke Deng, Tsinghua University 

 

08:30-09:50 Session I  

Chair: Toshinari Kamakura, Chuo University 

08:30-08:50 Estimation of treatment effects for heterogeneous matched pairs data with  

probit models 

Speaker: Wei Gao, Northeastern Normal University 

08:50-09:10 Visualization of relationship between group and characteristic using  

association rules 

Speaker: Yoshiro Yamamoto, Tokai University 

09:10-09:30 A robust statistical method based on principal Chi-squared test for assessing 

genetic association with multi-locus genotype data 

Speaker: Zhengbang Li, Central China Normal University  

09:30-09:50 A homogeneity test for odds ratio in 2x2 tables 

    Speaker: Yoshinori Fujii, University of Miyazaki 

 

09:50-10:10 Tea Break 

 

10:10-11:50 Session II 

Chair: Lixin Zhang, Zhejiang University 

10:10-10:30 Statistical methods for assessing safety risk of Imported Foods in China 

Speaker: Chongyuan Xu, Tsinghua University 

10:30-10:50 Cluster difference scaling for asymmetric dissimilarity data based on unfolding  

models 

Speaker: Kensuke Tanioka, Wakayama Medical University 

10:50-11:10 A novel approach for Markov random field with intractable normalizing 

constant on large lattices 

Speaker: Wanchuang Zhu, Tsinghua University 

11:10-11:30 Predictive inference with transferred priors  

Speaker: Jinfang Wang, Chiba University 

11:30-11:50 A Bayesian approach to real time monitor and forecast Chinese foodborne  

disease 

Speaker: Xueli Wang, Beijing University of Posts and Telecommunications 

 

11:50-12:10 Group Photo  

 

12:10-13:30 Lunch Buffet  Western Restaurant（恺撒宫）, 1st floor 

 



8 

 

 

 

 

13:30-15:30 Session III 

Chair: Manabu Iwasaki, Seikei University 

13:30-13:50 Comparison of EER for W-and Z-rules when the dimension is large 

Speaker: Takayuki Yamada, Kagoshima University 

13:50-14:10 LPRE criterion based estimating equation approaches for the  

error-in-covariables multiplicative regression models 

Speaker: Qihua Wang, Chinese Academic of Science  

14:10-14:30 An incomplete-data Fisher scoring 

Speaker: Keiji Takai, Kansai University  

14:30-14:50 A generalized EMS algorithm for model selection with incomplete data 

Speaker: Ping-Feng Xu, Changchun University of Technology 

14:50-15:10 Bias reduction of ML estimators of Gamma distribution parameters and  

comparison with other methods. 

Speaker: Yumina Kodaira, Graduate school of science and engineering, Chuo  

University 

15:10-15:30 Random search algorithm for optimal mixture experimental design 

Speaker: Chongqi Zhang, Guangzhou University 

 

15:30-15:50 Tea Break  

 

15:50-17:30 Session IV 

Chair: Qihua Wang, Chinese Academic of Science  

15:50-16:10 Measuring and analyzing intercultural competence 

Speaker: Sari Hosoya, Kanto Gakuin University 

16:10-16:30 The gap between DAR and AR Models: estimation and testing when  

coefficients are on the boundary 

Speaker: Feiyu Jiang, Tsinghua University 

16:30-16:50 A comparison study of rule space method and neural network model for  

learning diagnosis and it’ s an application  

Speaker: Atsuhiro Hayashi, Nagoya Institute of Technology  

16:50-17:10 Identifiability and estimation of causal mediation effects with missing data 

Speaker: Wei Li, Peking University 

17:10-17:30 Visualization for radiation monitoring post data using spatial interpolation 

Speaker: Fumio Ishioka, Okayama University 

 

17:40-19:40 Banquet  Tian Xiang Yuan (天香苑)，3rd floor 
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Schedule for November 3, 2017 (Friday) 

Yunqi Hall (云栖厅)    3rd floor 

 

08:30-10:10 Session V 

Chair: Kazunori Yamaguchi, Rikkyo University 

08:30-08:50 Statistical GAIT analysis based on the data set from glasses installed with IMU 

Speaker: Yoshihiro Sone, Graduate School of Science and Engineering, Chuo  

University 

08:50-09:10 Proper Inference for Value Function in High-Dimensional Q-Learning for  

Dynamic Treatment Regimes 

Speaker: Wensheng Zhu, Northeastern Normal University 

09:10-09:30 Item selection for impression survey 

Speaker: Hiroko Katayama, Graduate School of Informatics, Okayama  

University of Science 

09:30-09:50 Sparse sliced inverse regression for high dimensional via Lasso 

Speaker: Qian Lin, Tsinghua University 

09:50-10:10 Clustering of multivariate categorical data via penalized latent class analysis  

with dimension reduction 

Speaker: Michio Yamamoto, Okayama University 

 

10:10-10:30 Tea Break 

 

10:30-11:50 Session VI 

Chair: Zhi Geng, Peking University 

10:30-10:50 Discovering RNA interaction network by integrating sequence characteristics  

and expression profile of RNAs 

Speaker: Qi Li, Tsinghua University 

10:50-11:10 A necessary test for sphericity based on uniformity on hyper-sphere 

Speaker: Moe Amagai, Graduate School of Science, Tokyo University of  

Science  

11:10-11:30 Batch effects correction with unknown subtypes 

Speaker: Yingying Wei, The Chinese University of Hong Kang 

11:30-11:50 Performance studies of test statistics for two sample directional data 

Speaker: Yoshitomo Akimoto, Graduate School of Science and Engineering,  

Chuo University 

 

11:50-12:00 Ending Mark 

Chair: Ke Deng, Tsinghua University 

Towards the Next ICOTS10 in Kyoto 

Speaker: Kazunori YAMAGUCHI 

 

12:00-13:30 Lunch Buffet  Western Restaurant（恺撒宫）, 1st floor 
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TOWARDS THE NEXT ICOTS10 IN KYOTO 

July 8-13, 2018, Kyoto Japan 

Kazunori YAMAGUCHI* and Michiko WATANABE** 

*Rikkyo University, Tokyo, Japan 

**Keio University, Tokyo Japan 

 

 

1. Introduction 

 ICOTS (International Conference on Teaching Statistics) is held every four years. Its main 

purpose is to give statistic educators and professionals around the world the opportunity to 

exchange information, ideas and experiences, to present recent innovation and research in the 

field of statistic education, and to expand their range of collaborators. 

 

2. ICOTS 

We are at a critical time in statistics education where the world of data is changing 

rapidly. We need to be looking ahead to how as a field we will evolve and engage with 

the future. At the same time, we are celebrating our tenth ICOTS and this marks a time 

for us to look back on the past 40 years when in 1978, ISI’s Education Committee Task 

Force was established to plan for the first ICOTS. 

This is indeed an exciting time. It’s clear that statistics education has matured as a field. 

Data have become part of everyday life, vital for professions and part of our very fabric 

as a society. Data are used everywhere to document, evaluate, plan and persuade. The 

very nature of what we call “data” is not what it was 10 years ago or even last year. Data 

science is emerging as a new field. And yet it is not clear if we are moving together or 

apart. Evidence exists that it is both. Both areas focus on variability, uncertainty and 

context but may approach the analysis and collection of data quite differently. In terms 

of education, what can we learn from each other? Where do we see ourselves going? 

Next ICOTS will be held on July 8-13, 2018 in Kyoto Japan. Main theme of ICOTS-10 

is “Looking back, looking forward”. More than 500 international statistic educators and 

professionals will join the conference. 

 



 

 

 

Session I 
 

 

November 2, 2017 (Thursday) 

 

08:30-09:50 

 

 

Chair:  

Toshinari Kamakura, Chuo University 

Speaker:  

Wei Gao, Northeastern Normal University 

Yoshiro Yamamoto, Tokai University 

Zhengbang Li, Central China Normal University 

Yoshinori Fujii, University of Miyazaki 

 

 



 

ESTIMATION OF TREAMENT EFFECTS FOR HETEROGENEOUS MATCHED 

PAIRS DARA WITH PROBIT MODELS 

 

Jun WANG, Wei GAO and Man-Lai TANG 

 Key Laboratory for Applied Statistics of MOE, School of Mathematics 

and Statistics 

Northeast Normal University, Changchun, Jilin 130024, China 

 

 

Abstract: Estimating the effect of medical treatments on subject 

responses is one of the crucial problems in medical research. 

Matched-pairs designs are commonly implemented in the field of  

medical research to eliminate confounding and improve efficiency. In this 

article, new estimators of treatment effects for heterogeneous matched 

pairs data are proposed. Asymptotic properties of the proposed 

estimators are derived. Simulation studies show that the proposed 

estimators have some advantages over the famous Heckman’s estimator 

and inverse probability weighted (IPW) estimator. We apply the 

proposed methodologies to a blood lead level data set and an acute 

leukaemia data set. 



        

VISUALIZATION OF RELATIONSHIP BETWEEN GROUP AND 
CHARACTERISTIC USING ASOCIATION RULES 

Yoshiro YAMAMOTO and Sanetoshi YAMADA 

Department of Mathematics and Graduate School of Science, Tokai University 

Hiratsuka, Kanagawa 259-1292, Japan 
 

1. Introduction 

The information that customer data usually provides is the personal profile information including 

gender, age and so on. But, we can obtain the personal internal information by analyzing 

questionnaire data. We propose the visualization of multiple choice questionnaire to find the 

difference of the internal characteristic, about 6 ($=2 \times 3$) layers we call the media layers. The 

media layers are M1 (male from 20 years old to 34 years old), M2 (male from 35 years old to 49 

years old), M3 (male over 50 years old), F1 (female from 20 years old to 34 years old), F2 (female 

from 35 years old to 49 years old) and F3 (female over 50 years old).  

Offered data have 31 multiple choice questionnaires. This time, we think about this question 

``Please check all appropriate items about your health worries". Figure 1-1 shows total results of 

people that checked ``catch a cold easily" at this question. We could understand that total results are 

similar at all media layers. However, because the numbers of people of media layers are different 

from each other, if we look at each ratios of media layers, we understand that young groups have 

relatively at their health worries. About other health worries, M2 layer and M3 layer mind ``body 

odor of old people", F1 layer and F2 layer mind ``period pains". However, it is difficult to find out 

the difference of media layers about all health worries by this method because we should find out 

all question items.  

 

2. Extraction of strong relationship between attribute and item by association rule analysis 

We looked at the tendency of reaction of the media layer in Figure 1 about three question items, 

but we should find out all question items. There, we used association rule analysis (see [1,2,3]) as a 

method to find difference of tendency of answer by a group about all question items. It is basket 

data that association rule analyses are used well, but questionnaire data can be thought of 0-1 data 

as basket data. We also treated 0-1 data about media layer. 

To find out about question items that reacted the media layer, condition part extracted only the 

rule that was the media layer. We used apriori function for association rule analysis in statistical 

analysis software R. In addition, we used subset function to extract the association rules. When we 



        

set support more than 0.01, confidence more than 0.1 and lift more than 1.5 to find out strong rules, 

we could extract 27 rules. We can visualize association rules by arulesViz package ([8]). We could 

see the rule very well by this kind of plot, but the position between variables is unrelated to strength 

of relationship. Therefore we tried improvement of visualization to reflect the position relationship 

of variables.  

 

 

3. Visualization of association rules using the correspondence analysis 

We used the correspondence analysis (see [4,7]) to get the position relationship of variables. 

Correspondence analysis uses cross tabulation. And so that the correlation of the element of the row 

and the element of the column becomes biggest, correspondence analysis calculate row score and 

column score and plot them.  

We explain how to make of the visualization. First, we performed the correspondence analysis of 

the result that performed cross tabulation by questionnaire items and media layers to set the position 

of each item, and we displayed the second axis of the correspondence analysis (Figure 1 left). Next, 

we displayed circles that size depended on the number of the check and we displayed squares that 

size depended on the number of each media layer. Then, if its media layer is male, color of squares 

are blue, if its media layer is female, color of squares are red, and if its media layer is old, color of 

squares are deep (Figure 1 right). 

lhs  rhs supp conf lift 

F1 ⇒ period pains 0.044 0.381 4.408 

F2 ⇒ period pains 0.039 0.255 2.946 

F1 ⇒ chalk mark 0.038 0.323 2.726 

F1 ⇒ anemia 0.019 0.164 2.389 

F1 ⇒ edema 0.033 0.283 2.354 

F1 ⇒ feeling of cold 0.055 0.471 2.230 

F2 ⇒ anemia 0.023 0.151 2.201 

M3 ⇒ high blood pressure 0.066 0.309 2.196 

M3 ⇒ athlete's foot 0.045 0.211 2.085 

M1 ⇒ nothing special 0.017 0.131 2.060 

F2 ⇒ edema 0.037 0.243 2.020 

F3 ⇒ the skin's aging 0.116 0.500 1.993 

F1 ⇒ tend to be constipated 0.036 0.309 1.932 

F3 ⇒ ache in the knee 0.058 0.250 1.918 

F2 ⇒ feeling of cold 0.060 0.400 1.894 

Table 1. Association rules of health troubles by media layers 



        

 

 

 

 

 

 

 

 

 

 

 

 

Then, if support of rule is high, the thickness of the arrow of this visualization is big, and if lift of 

rule is high, the depth of the arrow of this visualization is deep. In this way, we made the 

visualization of the questionnaire result that reflected the position relationship of items. 

 By Figure 2, about the question of the worry of the health, we understand that M2 layer and M3 

layer are worried in ``body odor of old people" and F1 layer and F2 layer are worried in ``period 

pains". And, because there is ``overweight" midmost and there is much answer number, we 

understand many people are worried in ``fatness". But, because association rules are not shown, we 

understand that the relations with the specific media layer are not accepted on ``fatness". In this way, 

we can do much consideration in one plot. 

 

4. Interactive plot on RStudio and Shiny application 

About the association rule, by rules extracted by setting of the lower limit of the support, 

confidence and lift changes, differences of plot that is obtained are seen. To display rules that are 

easy to characterize with the media layer, so that we can interactively coordinate the parameter of 

association rules about this plot, we built the indication system using the manipulate function on 

RStudio and Shiny Application (Figure 2). Then, for the improvement of indication and plots of 

other questions. It is possible to change and adjustment of question contents, size of fonts, size of 

circles and size of squares. 
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Figure 1. Visualization between group and characteristic using Biplot (left) and proposed visualization (right) 
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A ROBUST STATISTICAL METHOD BASED ON PRINCIPAL CHI-SQUARED 

TEST FOR ASSESSING GENETIC ASSOCIATION WITH MULTI-LOCUS 

GENOTYPE DATA 

Zhengbang Li 

Central China Normal University 

Abstract: Simultaneous testing of multiple genetic variants for association 

has been widely recognized as a valuable approach complementary to 

single marker tests. As such, principal components regression(PCR) has 

been found to have competitive power. Here, we rstly propose a new 

global test by the use of co-dominant codes for all markers and PCR theory. 

The new global test is built on an empirical Bayes type of score statistic for 

testing marginal associations with each single marker. The new global test 

gains power by eectively using linkage disequilibrium among testing 

markers. The new global test reduces to PCR when the genotype for each 

marker is coded as the number of minor alleles. This connection lends 

insight into the power of the new global test relative to PCR and some 

other popular multi-marker test methods. When the real disease causal 

marker adopts additive code, the new global test drop some powers with 

Hardy-Weinberg Equilibrium in the control population. We propose a 

robust test method by taking the minimum p-value of the new global test 

and PCR based on genotype data adopting additive codes. Through 

extensive simulation studies and real data analysis about the association 



between pancreatic cancer and genes, we show that the proposed robust 

testing method can gain desirable power and can often identify 

association signals that may be missed by existing methods. 

 



 
A HOMOGENEITY TEST FOR ODDS RATIO IN 2 X 2 TABLES 

Yoshinori FUJII 
Faculty of Education, University of Miyazaki 

Miyazaki 889-2192, Japan 
 

 

1. Introduction 

 To investigate the association between two categorical variables, we often need to consider the 

effects of other variables. A method to solve the problem is stratifying. Summary odds ratio is used 

to present the association of two categorical variables based on stratified 2x2 tables. For 

interpreting the association it is important to check the assumption of homogeneity of odds ratios. 

Several tests were proposed, for example Breslow-Day test, likelihood ratio test and Cochran’s Q 

test. These tests are constructed in the situation that the number of strata is small and the sample 

sizes of 2 x 2 tables are large. On the other hand Fisher’s exact test are recommended when we 

analyses the 2 x 2 table with small sample size. In this talk we show an idea to construct a 

homogeneity test for odds ratios when the sample sizes of some tables are small. 

 

2. Models and Methods 

Consider stratified 2 x 2 tables. For k-th stratum kx  and  ky  are independently distributed 

and the distributions of them are binomial distributions ),( ,1 kk pnB  and ),( ,2 kk qnB  respectively 

(k=1,2,…,K). The odds ratio k of k-th stratum is given by )1(/)1( kkkk pqqp  . To summarize 

the overall association Mantel-Haenszel estimator  
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We consider the homogeneity test for odds ratio with null hypothesis KH   210 :  vs 

alternative 01 : HnotH . In this paper following three tests are considered. 
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Breslow-Day test (Breslow and Day,1980) 
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We propose a new test for considering the small sample cases. At first we consider the testing 

MH ˆ for the k-th 2x2 table based on non-central hypergeometric distribution and the mid-p 

value of the test is denoted by kpv . The cumulative distribution function of the chi-squared 

distribution with one degree of freedom is denoted by chisqF . So we proposed the following test.  

Proposed test 
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    where 22
kk XY   for large sample size case and )(2

kchisqk pvFY  for small sample size case.  

 

3. Simulation Study 

  We conducted the simulation study to compare above three tests. The setting and the detailed 

results of the simulation is given in my talk. 
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STATISTICAL METHODS FOR ASSESSING SAFETY RISK OF 

IMPORTED FOODS IN CHINA 

Chongyuan XU 
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Abstract: Currently the volume of imported food to China is increasing every 

year, but the relevant supervision cost remains the same, so increasing the 

supervision efficiency is of importance. A reasonable scheme is to focus the 

resources mainly on the most “dangerous” foods, which is based on 

quantifying the safety risk of each kind of food. One important step is to 

estimate the rate of substandard imported food for each, categorized by any 

combination of a food category, a toxin to be inspected and an exporting 

country. It is a classical statistical problem of inferring parameters of multiple 

Bernoulli samples. It is challengeable to estimate the rates of substandard 

food because the sample size is seriously inadequate. However, this problem 

can be solved by using the correlation among all rates of substandard 

imported food. In this work, we propose a method mainly based on 

Hierarchical Bayes Model and Factor Model.  
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1 Introduction

Asymmetric dissimilarity data are observed in various domains such as the marketing area. Given asymmetric

dissimilarity data in some situations, it is important to comprehend the asymmetric relation between objects.

Asymmetric Multidimensional Scaling (AMDS) is one of the approaches to understand asymmetric relations

(Borg and Groenen, 2005). However, if the number of objects in the asymmetric data is large, it may be diffi-

cult for us to comprehend the results. This is because we have to interpret the relations between asymmetries,

through vectors or radii, in addition to coordinates of objects. To overcome this problem, we propose simul-

taneous clustering and AMDS method based on Unfolding (Zieltman and Heiser, 1993) and Cluster Difference

Scaling (CDS) (Heiser and Groenen, 1997), called Cluster Difference Scaling for Asymmetric dissimilarity data

based on Unfolding (CDSAU). In the proposed method, we can understand the asymmetric relations between

clusters, visually. This method has two advantages. First, through the estimated coordinates of cluster cen-

troids, we can easily understand the asymmetric relations between clusters. Second, the proposed method can

be considered a generalization of AMDS based on Unfolding, which include existing AMDS methods.

2 Model and objective function of CDSAU

Here, we introduce model and the objective function of the proposed method.

Definition 2.1 Model of CDSAU

Let ∆ = (δij), δij ∈ R+ (i, j = 1, 2, · · · , n) be an asymmetric dissimilarity matrix for objects. Given ∆,

the number of dimensions d, the number of clusters for objects k and the number of slide-vectors m (≤ k),

the model of CDSAU is defined as follows: for arbitrarily i, j = 1, 2, · · · , n, there exists o, ℓ = 1, 2, · · · , k and

s = 1, 2, · · · ,m such that

δij = doℓs(X,Z) + eij (o, ℓ = 1, 2, · · · , k; s = 1, 2, · · · ,m) (1)

where

doℓs(X,Z) = ∥xo − (xℓ − zs)∥,

X = (x1,x2, · · · ,xk)
T , xo = (xot) ∈ Rd (i = 1, 2, · · · , n; t = 1, 2, · · · , d) be coordinates matrix of cluster

o (o = 1, 2, · · · , k), Z = (z1, z2, · · · , zm)T , zs = (zst) ∈ Rd be slide-vectors, ∥ · ∥ is Euclidean norm and

eij ∈ R (i, j = 1, 2, · · · , n) is error.

See Figure 1. This is the example of the interpretation for CDSAU. xi and xj are coordinates of cluster i

and j, respectively, and z is a slide vector. The left part and the right part of Figure 1 represent distance from

cluster i to cluster j and from cluster j to cluster i, respectively. In the case, distance from cluster i to cluster

j is relatively close to the distance from cluster j to i. In short, the asymmetric relation between clusters can

be described by the direction of the slide-vector in this model.



Figure 1: The example of interpretation for the CDSAU in the case of k = 2 and m = 1

From the model (1), in CDSAU, it can be selected for the kinds of slide-vectors. Next, we define the objective

function of CDSAU based on the model (1).

Definition 2.2 Objective function of CDSDAU

Given asymmetric dissimilarity data ∆ = (δij) δij ∈ R+, the number of dimensions d, the number of clusters

k and the number of slide-vectors m the objective function of CDSAU is defined as follows:

L(X,Z,U ,Ψ |∆)

=

n∑
i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

m∑
s=1

uioujℓψℓs

(
δij − doℓs(X,Z)

)2

. (2)

where U = (uio), uio ∈ {0, 1} (i = 1, 2, · · · , n; o = 1, 2, · · · , k) be an indicator matrix of objects, and Ψ =

(ψℓs), ψℓs ∈ {0, 1} (ℓ = 1, 2, · · · , k; s = 1, 2, · · · ,m) be indicator matrix of these cluster centroids,

Here, examples of indicator matrix U and Ψ in the case of n = 6, k = 3 and m = 2 are as follows:

U =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

 and Ψ =

 1 0
1 0
0 1

 .
The row and column of U represent objects and clusters, respectively. In the case of U , object 1 and 2 belong

to cluster 1, object 3 and 4 belong to cluster 2 and object 5 belong to cluster 3, respectively. The row and

column of Ψ represent clusters and slide-vectors, respectively. As the same way of U , in the case of Ψ , cluster

1 and cluster 2 belong to slide-vector 1, and cluster 3 belong to slide-vector 2, respectively.

The objective function (2) can be described as the special case of symmetric MDS. The relation between

symmetric MDS and the proposed method is shown.



Proposition 2.1 The other description for objective function of CDSAU

Eq. (2) is redescribed as follows:

L(X,Z,U ,Ψ |∆) =
1

2

∥∥∥W ⊙
[
∆† −D(ΦQ)

]∥∥∥2 (3)

where

W =

[
On,n 1n1

T
n

1n1
T
n On,n

]
, ∆† =

[
On,n ∆

∆T On,n

]
Φ =

[
U On,m

U −UΨ

]
, Q =

[
X
Z

]
, (4)

⊙ indicates Hadmard product such that A⊙B = (aijbij) for any n by p matrix, A and B. Here, On,m = (0) is

n by m matrix and 1n = (1) is vector with the length of n. In addition to that, for Y = (y1,y2, · · · ,yn) yi ∈ Rd,

D(Y ) = (dij(Y )), dij(Y ) = ∥yi − yj∥ (i, j = 1, 2, · · · , n)

The objective function of the ordinal symmetric MDS can be described as follows:

∥∆−D(Y )∥2,

where ∆ and Y are symmetric dissimilarity data and coordinates of objects, respectively. Therefore, the dif-

ference between the ordinal MDS and CDSAU is depending on W and coordinates of objects. The objective

function of CDSAU can be considered as ordinal MDS with missing values for dissimilarity data and distance

data. In addition to that, the difference between ordinal Unfolding and CDSAU is depending only on coordi-

nates. Especially, in CDSAU, the coordinates is added to constraints such as product of indicator matrix and

coordinates matrix. Finally, if k = m, CDSAU become the same method of CDU (Vera et al., 2013).

3 Algorithm

Here, we show the algorithm of CDSAU based on Alternative least squares criterion (ALS).

Algorithm of CDSAU

Initial Step:

Set n, k, m, U , Ψ , X, Z and H as initial parameters,

where H = (hs†t) hs†t ∈ R (s† = 1, 2, · · · , (k +m); t = 1, 2, · · · , d)

Scaling Step:

Scaling Step 1: Update X and Z by Eq.(5), given U and Ψ

Scaling Step 2: Update H ← Q, given X, Z, U , and Ψ

Scaling Step 3: If the stop condition of Scaling step, go to clustering step, else, back to Scaling Step 1.

Clustering Step:

Clustering Step 1 Update U , given Φ, X and Z

Clustering Step 2 Update Ψ , given U , X and Z

Final Step

If stop condition is satisfied, stop this algorithm, else return to the Scaling Step.



Next, to explain the estimation way of X and Z, majorizing function of CDSAU is derived as the same

way of SMACOF algorithm (De Leeuw and Heiser, 1980). The majorizing function can be derived based on

Cauchy-Schwarz inequality.

Next, we show updating formula for X and Z based on the majorizing function.

Proposition 3.1 Updating formula of Q

Given Φ and H , updating formula of Q is derived as follows:

Q = [ΦTV Φ]+ΦTB(ΦH)ΦH (5)

where [ΦTV Φ]+ is the Moore-Penrose inverse of ΦTV Φ.

V =

2n∑
i∗=1

2n∑
j∗=1

wi∗j∗(ei∗ − ej∗)(ei∗ − ej∗)
T ,

ei∗ = (ei∗s∗) ei∗s∗ =

{
1 (i∗ = s∗)
0 (i∗ ̸= s∗)

, (i∗, s∗ = 1, 2, · · · , 2n),

B(ΦH) = (bi∗j∗) (i
∗, j∗ = 1, 2, · · · , 2n)

bi∗j∗ =

{
− wi∗j∗δ

†
i∗j∗

di∗j∗ (ΦH)
(if i∗ ̸= j∗ and di∗j∗(ΦH) ̸= 0)

0 (if i∗ ̸= j∗ and di∗j∗(ΦH) = 0)
and

bi∗i∗ = −
2n∑

(j∗=1)∧(i∗ ̸=j∗)

bi∗j∗

For the estimation of U and Φ, the solution corresponding to minimized value of the objective function is

selected among all combinations, respectively.

4 Conclusions

In this presentation, we proposed simultaneous method and AMDS based on Unfolding. CDSAU can represent

the asymmetric relations between clusters even if the number of objects is large. However, there are several

future works. For example, the number of clusters and the number of slide-vectors are tuning parameters and

there are no ways to choose. In addition to that, there are many local optima since there are two indicator

matrices in CDSAU.
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A NOVEL APPROACH FOR MARKOV RANDOM FIELD WITH INTRACTABLE 

NORMALIZING CONSTANT ON LARGE LATTICES 

Wanchuang Zhu 

Center for Statistical Science and Department of Industrial Engineering, 

Tsinghua University, Beijing 100084, P.R. China 

 

Abstract: The pseudo likelihood method of Besag (1974) has remained a 

popular method for estimating Markov random field on a very large lattice, 

despite various documented deficiencies. This is partly because it remains 

the only computationally tractable method for large lattices. We introduce a 

novel method to estimate Markov random fields defined on a regular lattice. 

The method takes advantage of conditional independence structures and 

recursively decomposes a large lattice into smaller sublattices. An 

approximation is made at each decomposition. Doing so completely avoids 

the need to compute the troublesome normalizing constant. The 

computational complexity is O(N), where N is the number of pixels in the 

lattice, making it computationally attractive for very large lattices. We show 

through simulations, that the proposed method performs well, even when 

compared to the methods using exact likelihoods.  

 

 



PREDICTIVE INFERENCE WITH TRANSFERRED PRIORS
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1 Introduction

In this paper we introduce a novel approach for computing Bayesian predic-
tive distributions using priors derived from a second separate data set. We
illustrate this method by showing how to compute predictive distributions of
HbA1c, an indicator for diabetes, using data obtained in a hospitial in Tokyo.

2 Transferred Prior

Figure 1 is a diagram showing how to compute the transferred posterior dis-
tributions based on two sets of data. The target data is a set of data obtained
by the researchers, with usually detailed information on many aspects of each
subject. The source data is a set of data, usually large but coarse, such as public
survey data available on the web. In our study, we shall consider source data
in table forms.

Let θ = (η′ , ξ′) be the regression parameter based on target data, which is
partitioned into η and ξ. Here η is regression parameter based on the source
data, say Ds. The dimension of ξ is usually much larger than that of η. We
make the important conditional independence assumption of ξ and Ds:

p(ξ | η, Ds) = p(ξ | η) , (1)

which states that ξ is independent of Ds given the source regression parameter
η. We shall introduce a framework for computing the predictive distribution
of θ using priors based on Ds.

In the rest of the paper, we outline the steps for obtaining the transferred
priors, the prior distributions of θ utilizing the source data Ds. Once this trans-
ferred prior distribution is obtained, we can perform traditional Bayesian ana-
lyese using techniques such as MCMC. The transferred prior can be obtained
through the following steps.

1. Let p(θ) be a prior for θ. For instance, p(θ) may be chosen as non-
informative. We call this prior the target prior.

2. Next, we obtain the source prior for η by marginalizing θ:

p(η) =
∫

p(θ) dξ =
∫

p(η, ξ) dξ .



Source Prior Source Data Source Posterior
Bayesian

Cell Regression

Target Prior

Marginalization

Transferred Prior

Target Data Target Posterior
Bayesian

Regression

Conditioning

Transferred Posterior

RegressionBayesian

Figure 1: A diagram showing how to compute the transferred posterior distributions using
two sets of data, the target data and the source data.

3. Applying the Bayesian cell regression (Wang and Hosaka, 2017) to Ds
with prior p(η), we obtain the source posterior p(η|Ds) for η.

4. Finally, we obtain the desired transferred prior p(θ | Ds) as follows

p(θ | Ds) = p(η, ξ | Ds)

= p(ξ | η, Ds)p(η | Ds)

= p(ξ | η)p(η | Ds) . (2)
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Abstract：Foodborne diseases bring big impact on public health and they 

are often underreported. It is because a lot of patients usually have delay 

to see doctors when they suffer from foodborne diseases. In this paper, 

we study the Chinese foodborne surveillance data. We build a Bayesian 

hierarchical model to monitor and forecast Chinese foodborne disease. 

We propose several scoring rules to assess the performance of different 

nowcasting procedures. We conclude that Bayesian nowcasting with 

consideration of right truncation of the reporting delay has the nice 

performance for shortterm forecasting analysis, and the Bayesian 

nowcasting could be a timely and valuable tool to better approximate 

current epidemic trends, which is crucial for public health. 

 



 

 

 

Session III 
 

 

November 2, 2017 (Thursday) 

 

13:30-15:30 

 

 

Chair:  

Manabu Iwasaki, Seikei University 

Speaker:  

Takayuki Yamada, Kagoshima University 

Qihua Wang, Chinese Academic of Science 

Keiji Takai, Kansai University 

Ping-Feng Xu, Changchun University of Technology 

Yumina Kodaira, Chuo University 

Chongqi Zhang, Guangzhou University 



COMPARISON OF EER FOR W- AND Z- RULES WHEN THE DIMENSION IS
LARGE

Takayuki YAMADA1, Tetsuro SAKURAI2 and Yasunori FUJIKOSHI3
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Summary

This paper is concerned with high-dimensional asymptotic results for W - and Z- rules when the sample
size N and the dimension are large. Firstly, we obtain the EPMCs (Expected Probability of Misclassifications)
of W - and Z- rules in expanded forms with errors of O(N−2). It is pointed out that Z-rule has smaller EER
(Expected Error Rate) than W -rule when the prior probabilities are the same, neglecting the terms of O(N−2).
We checked accuracies of our asymptotic results numerically by conducting a Mote Carlo simulation.

Key Words and Phrases: Discriminant analysis, EPMC, High-dimensional asymptotic results, W - rule, Z-rule.

1. Introduction
This paper is concerned with the problem of classifying an observation vector x as coming from one of two

populations Π1 and Π2. Let Πi have p-dimensional normal populations with mean vectors µi and the p×p common
positive definite covariance matrix Σ, which are denoted as Np(µi,Σ). Consider the case that all parameters are
unknown. Suppose that the observation vectors x1i, . . . ,xNi,i are independently and identically distributed (i.i.d.)
as Np(µi,Σ), i = 1, 2. Let W (x) be the linear discriminant function

W (x) = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
,

where x̄1, x̄2 and S are the sample mean vectors and the pooled sample covariance matrix defined by

x̄i =
1

Ni

Ni∑
j=1

xij , i = 1, 2, S =
1

n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
′, n = N − 2 = N1 +N2 − 2.

Then, the linear discriminant rule with a cutoff point c, which is also called W -rule, classifies x as Π1 if W (x) > c
for a constant c, and as Π2 if W (x) < c. Furthermore, the discriminant rule, which is based on the likelihood ratio
criterion for testing the composite null hypothesis that x,x11, . . . ,x1N1

∈ Π1 against the composite alternative
hypothesis that x,x21, . . . ,x2N2

∈ Π2, is called maximum likelihood rule or Z-rule (see, e.g., Anderson [1] ). Let

Z(x) = 2−1{(1 +N−1
2 )−1(x− x̄2)

′S−1(x− x̄2)− (1 +N−1
1 )−1(x− x̄1)

′S−1(x− x̄1)}.

Then the Z-rule with a cutoff point c classifies x as Π1 if Z(x) > c and Π2 if Z(x) < c. There are two types of
probability of misclassification. One is the probability of allocating x into Π2 even though it is actually belonging



to Π1. The other is the probability that x is classified as Π1 although it is actually belonging to Π2. These two
types of expected probabilities of misclassifications (EPMCs) for W- and Z- rules are expressed as

ew(2|1) = P (W (x) < c|x ∈ Π1) and ew(1|2) = P (W (x) > c|x ∈ Π2),

ez(2|1) = P (Z(x) < c|x ∈ Π1) and ez(1|2) = P (Z(x) > c|x ∈ Π2).

It is easily shown that ew(1|2) (or ez(1|2)) is obtained from ew(2|1) (or ez(2|1)) by replacing (c,N1, N2) with
(−c,N2, N1). Thus, in this paper, we only deal with ew(2|1) and ez(2|1).

Note that the EPMCs of W - and Z- rules are obtained from the distribution functions of W and Z. In general, it
is hard to evaluate these expected probabilities of misclassification (EPMC) explicitly, but some asymptotic results
including asymptotic expansions have been obtained. It is well known that the discriminant functions W (x) and

Z(x) converges in distribution to the normal distributions, i.e., W (x) and Z(x)
D→ N((−1)i∆2/2,∆2), if x ∈ Πi

under the asymptotic framework A0:

A0 : N1 → ∞, N2 → ∞, N1/N2 → γ ∈ (0,∞), p is fixed.

Here, ∆2 = (µ1 − µ2)
′Σ−1(µ1 − µ2). For a review of result under A0, see e.g., Anderson [1] and Fujikoshi et al.

[3]. Generally, the precision of asymptotic approximations under A0 gets worth as the dimension p becomes large.
As an alternative approach to overcome this shortcoming, it has been considered to derive asymptotic distributions
of discriminant functions in a high-dimensional situation where n and p tend to infinity together. Fujikoshi and
Seo [2] derived the limiting distribution of a general discriminant function for a class of discriminant rules which
includes both the W - rule and Z- rule under asymptotic framework A1:

A1 : p → ∞, N1 → ∞, N2 → ∞, p/n → γ0 ∈ [0, 1) and N1/N2 → γ ∈ (0,∞).

Yamada et al. [4] obtained asymptotic expansions of the EPMCs for W - and Z- rules with the errors of order
O(n−2) under the asymptotic framework A1. Making use of these expansions, we compare EER (Expected Error
Rate) asymptotically in Section 2. It is shown that Z-rule has smaller EER than W -rule when the prior probabilities
are the same, neglecting the terms of O(n−2). We carried out simulation to compare EER, and gave the results in
Section 3.

2. Main results
Firstly, we give results for asymptotic expansions of EPMCs for W - and Z-rules derived in Yamada et al. [4].

Theorem 1. Let yw = v
−1/2
w (c+ uw), where uw = uw(N1, N2,∆

2) and vw = vw(N1, N2,∆
2) are given as follows.

uw = −1

2

n

m+ 1

{
∆2 −

(
p− 2

N1
− p− 2

N2

)}
, vw =

n2(n+ 1)

(m+ 1)2(m+ 2)

(
∆2 +

N(p− 2)

N1N2

)
.

Then, it holds that under A1,

P (W (x) < c|x ∈ Π1) = Φ(yw)−
1

n

4∑
k=1

ℓkHk−1(yw)ϕ(yw) +O(n−2),

where ℓk = ℓk(N1, N2,∆
2) for k = 1, 2, 3, 4 are given as follows.

ℓ1 = − 2
√
vw

n

m+ 1

{
uw +

1

2

(
n

N1
− n

N2

)}
,

ℓ2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

Nn
N1N2

∆2 + N(p−2)
N1N2

+
n

2N
+

1

2vw

[
2n

m+ 1
u2
w

+
n(p− 2)

2(m+ 1)2

(
n

N1
− n

N2

)2

+
n2

(m+ 1)2
N1n

NN2
∆2 +

n2(p− 1)

(m+ 1)2(m+ 2)

N2n

NN1
∆2

]
,



ℓ3 = − 1
√
vw

{
2n

m+ 1
uw +

Nn

N1N2

uw + 1
2

n
m+1

N2−N1

N ∆2

∆2 + N(p−2)
N1N2

}
,

ℓ4 =
n

m+ 1
+

n(p− 1)

4(m+ 2)(n+ 1)
+

1

4

Nn
N1N2

∆2 + N(p−2)
N1N2

(
1 +

∆2

∆2 + N(p−2)
N1N2

)
.

Here, Hk(.) is k-th Hermite polynomial.

Theorem 2. Let yz = v
−1/2
z (c+ uz), where uz = uz(N1, N2,∆

2) and vz = vz(N1, N2,∆
2) are given as follows.

uz = − n

m+ 1

√
N

N1N2
ω−1
1 ω−1

2 ∆2, vz =
n2(n+ 1)

(m+ 1)2(m+ 2)

N

N1N2
ω−2
1

{
∆2 + (p− 2)ω2

1

}
,

where ω1 = ω1(N1, N2) =
√
2{(1 +N−1

2 )− a1/2}, ω2 = ω2(N1, N2) =
√

2{(1 +N−1
2 ) + a1/2}, a = a(N1, N2) =

(1 +N−1
2 )/(1 +N−1

1 ). Then, it holds that under A1,

P (Z(x) < c∗|x ∈ Π1) = Φ(yz)−
1

n

4∑
k=1

ζkHk−1(yz)ϕ(yz) +O(n−2),

where c∗ =
√

(1 +N−1)/{(1 +N−1
1 )(1 +N−1

2 )}c, ζk = ζk(N1, N2,∆
2) for k = 1, 2, 3, 4 are given as follows:

ζ1 = − 2n

m+ 1

uz√
vz

,

ζ2 =
3n

m+ 1
+

n(p− 1)

(n+ 1)(m+ 2)
+

nω2
1

∆2 + (p− 2)ω2
1

+
1

2vz

{
2n

m+ 1
u2
z +

n2

(m+ 1)2
Nn

N1N2
ω−2
2 ∆2 +

n2(p− 1)

(m+ 1)2(m+ 2)

Nn

N1N2
ω−2
2 ∆2

}
,

ζ3 = − 1
√
vz

{
2n

m+ 1
uz +

nω2
1uz

∆2 + (p− 2)ω2
1

}
,

ζ4 =
n

m+ 1
+

n(p− 1)

4(m+ 2)(n+ 1)
+

1

4

nω2
1

∆2 + (p− 2)ω2
1

{
1 +

∆2

∆2 + (p− 2)ω2
1

}
.

Let πi be the prior probabilities of x drown from Πi for i = 1, 2. a Then, the expected error rate (EER) for
W -rule with a cutoff point cw and for Z-rule with a cutoff point cz are expressed as

EERw(cw) = π1P (W (x) < cw|x ∈ Π1) + π2P (W (x) > cw|x ∈ Π2),

EERz(cz) = π1P (Z(x) < cz|x ∈ Π1) + π2P (Z(x) > cz|x ∈ Π2).

The following theorem is derived by using Theorem 1 and 2.

Theorem 3. Let EERw(cw) and EERz(cz) be the expected error rates of W - rule with a cutoff point cw and Z-
rule with a cutoff point cz, respectively.

(1) The minimums of limA1 EERw(cw) and limA1 EERz(cz) are attained at cw = cw,m and cw = cz,m, respec-
tively, where

cw,m =
1

2

N

N − p

[
p

N2
− p

N1
+ 2

N

N − p

(
1 +

Np

N1N2

1

∆2

)
log

π2

π1

]
,

cz,m =

{
1 +N−1

(1 +N−1
1 )(1 +N−1

2 )

}−1/2(
N

N − p

)2(
1 +

Np

N1N2

1

∆2

)
log

π2

π1
.



(2) When π1 = π2, it holds that

EERw(cw,m)− EERz(cz,m) = − 1

4vw

(n− 1)(p− 2)

(m+ 1)3

(
n

N1
− n

N2

)2

H1(yc)ϕ(yc) +O(n−2),

where yc = {−(1/2)∆2}/
√{

∆2 + N(p−2)
N1N2

}
n+1
m+2 . Further, since H1(yc) = yc < 0, we have that EERz(0) is less

than or equal to EERw(cw,m), neglecting the term of O(n−2). When N1 = N2, the difference becomes O(n−2).

3. Simulation result
In Table 1, we give the values of EERw(0), EERw(cw,m) and EERz(0) obtained by simulation for the case

π1 = π2 obtained by simulation. We calculated these values when p = 8, 32, (N1, N2) = (30, 10), (25, 15), ∆ =
1.05, 1.68, 2.56, 3.29, where the setting of ∆ is followed to Wyman et al. [5]. We can see a tendency from Table 1 that
the magnitude of these error rate has the order “EERz(0) < EERw(cw,m) < EERw(0)” for almost all simulation
settings (The difference appears in less than 4th place of decimal point.).

Table 1: Comparison of EER

(N1, N2) ∆
p = 8 p = 32

EERw(0) EERw(cwm) EERz(0) EERw(0) EERw(cwm) EERz(0)

(30, 10)

1.05 0.371 0.370 0.369 0.460 0.460 0.459
1.69 0.262 0.262 0.261 0.410 0.410 0.409
2.56 0.145 0.145 0.144 0.335 0.334 0.334
3.29 0.082 0.081 0.081 0.276 0.276 0.275

(25, 15)

1.05 0.362 0.362 0.362 0.455 0.455 0.455
1.69 0.255 0.255 0.254 0.403 0.403 0.403
2.56 0.141 0.141 0.141 0.326 0.326 0.326
3.29 0.079 0.079 0.079 0.269 0.269 0.269
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Abstract: In this paper, we propose two estimating equation based 

methods to estimate the regression parameter vector in the multiplicative 

regression model when a subset of covariates are subject to measurement 

error but replicate measurements of their surrogates are available. Both 

methods allow the number of replicate measurements to vary between 

subjects. No parametric assumption is imposed on the measurement 

error term and the true covariates which are not observed in the dataset. 

Under some regularity conditions, the asymptotic normality is proved for 

both the proposed estimators. Furthermore, a theoretical comparison is 

made for them in a special case where the distribution of the 

measurement error follows the normal distribution. Some simulation 

studies are conducted to assess the performances of the proposed 

methods. Real data analysis is used to illustrate our methods. 
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1 Introduction
The EM algorithm (Dempster, Laird and Rubin 1977) is a standard method to compute
the maximum likelihood estimates of incomplete-data models (models with missing data
or/and latent variables). Although the EM algorithm is both stable and simple, it has
major problems. One of the major problems with use of the EM algorithm is its slow
convergence. Some authors have proposed variants to overcome this problem (McLachlan
and Krishnan 2002).

In this talk, I propose an incomplete-data Fisher scoring method (IFS for short) to
accelerate the convergence. Let α be the parameter of interest, α(t) the current estimated
value of α, and α(t+1) the improved estimated value of α. The IFS has an iteration of
the form,

α(t+1) = α(t) + s
1

n
Jcom(α

(t))−1∇ℓobs(α
(t)) (1)

for independent data of size n, where s is the steplength, Jcom(α
(t)) is the expected

complete-data information matrix, evaluated at α(t), and ∇ℓobs(α
(t)) is the first derivative

of the observed-data log-likelihood function, evaluated at α(t). Note that Jcom(α
(t)) can

be computed even in the presence of missing values.
The steplength adjustment in the IFS has three advantages over the EM algorithm.

To clarify this point, I use the bivariate normal distribution data of sample size n with
missing values. Let the mean and the variance be µ and Σ, respectively. The iterations
for the EM algorithm can be transformed to

µ(t+1) = µ(t) +
1

n
Σ(t)−1∂ℓobs(α

(t))

∂µ
,

Σ(t+1) = Σ(t) +
1

n
2(Σ(t)−1 ⊗ Σ(t)−1)

∂ℓobs(α
(t))

∂vec(Σ)
.

Apparently, these two iterations are identified as equation (1) where s = 1. Note that
the parameters µ and Σ are not the natural parameters of the exponential family. Thus,
the first advantage of the IFS is that the EM algorithm and the IFS method produce
an identical iteration for the unit steplength. For the other distributions and the other
settings with latent variables as well, by adjusting the steplength, the EM algorithm and
the IFS become identical to each other. It follows that when the steplength is greater than
the certain length that makes the IFS identical to the EM algorithm, the convergence is
expected to be faster than the EM algorithm, which is the second advantage. The third



advantage is that the IFS can make a smooth transition from the EM algorithm to the IFS
with a faster convergence than the EM algorithm by only changing its steplength. This
transition is a kind of “hybrid EM algorithm” which uses the faster convergence property
of the EM algorithm during the initial stages and the faster convergence property of the
IFS near the convergent point.

2 Derivation
In this section, we briefly show a derivation of the IFS. The basic idea is to mimic the
sequence produced by the incomplete data with the complete data which are not actually
available If the complete data were available, the Fisher scoring method would provide

its direction as
1

n
Jcom(α

(t))−1∇ℓcom(α
(t)), where ∇ℓcom(α

(t)) is the first derivative of the

complete-data log-likelihood function. The Fisher scoring method is well known to provide
a good result (Small and Wang 2003). However, in reality, the complete data (and thus
ℓcom(α

(t))) are not available. An alternative function to ℓcom(α
(t)) is ℓobs(α

(t)). I will
approximate the sequence the Fisher scoring method produces for complete data by the
actually available sequence, which a scaled version of ℓobs(α

(t)) produces. When the
distance between variables x and y is measured with E[∥x − y∥2], the distance to be
made as small as possible is

E

[∥∥∥∥ 1nJcom(α(t))−1∇ℓcom(α
(t))−B∇ℓobs(α

(t))

∥∥∥∥2
]

with respect to matrix B. The solution is B = n−1Jcom(α
(t))−1, which provides the

direction of the IFS. This derivation is completely different from the principle of the EM
algorithm. However, as I noted before, the sequence provided by the IFS becomes identical
to that by the EM algorithm for a certain steplength. Thus, the IFS is closely related
to the EM algorithm in this way. Note that the same iteration as equation (1) can be
obtained through the Lower-bound algorithm (Böhning and Lindsay 1988) for ℓobs(α

(t)).
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Abstract 

The EMS algorithm is a useful method for model selection with missing data. It performs E-

step (Expectation step) and MS-step (Model Selection Step) alternately to find the minimum 

point of the observed generalized information criteria (GIC). However, sometimes it may 

not be numerically feasible to perform the MS-step, especially for high dimensional settings. 

In this paper, we seek only a decrease in the observed generalized information criteria in the 

MS-step. The resulting method is called a generalized EMS (GEMS) algorithm, which 

includes the EMS algorithm as a special case. We obtain several numerical convergence 

results of the GEMS algorithm. A useful special case is that all limit points of the EMS 

algorithm satisfy a necessary condition of the minimum points of the observed GIC under 

very weak conditions. We apply the GEMS algorithm for Gaussian graphical model selection 

and variable selection with missing data and compare with state of the art methods via 

numerical experiments. 
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1. Introduction
The gamma distribution, denoted as gam(α, β), is a two-parameter distribution with proba-

bility density function,

fgam(x) =
xα−1

βαΓ(α)
exp

(
−x
β

)
, x > 0, (1)

where α > 0 is the shape parameter, β > 0 is the scale parameter and Γ(·) is the gamma
function. The gamma distribution is a useful model in many field of applications.
Although the maximum likelihood (ML) method is the most popular parameter estimation

method, there are no closed-form expressions for the ML estimators for the two-parameter
gamma distribution. Therefore the numerical calculations with iteration are generally used.
The moment estimators of the two gamma parameters have closed-forms, they are not efficient

under either small samples or large samples (Ye and Chen (2017)). Ye and Chen (2017) proposed
the new method using the three-parameter generalized gamma distribution.
The three-parameter generalized gamma distribution is denoted as gg(α, β, γ) where γ is a

power parameter. It is a extension of the gamma distribution with probability density function

fgg(x) =
γxαγ−1

βαγΓ(α)
exp

[
−
(
x

β

)γ]
, x > 0. (2)

The generalized gamma distribution can be obtained by a power transformation of gamma: if
X ∼ gam(α, βγ), then X1/γ ∼ gg(α, β, γ). This distribution was proposed by Stacy (1962).
This is a flexible model that contains the gamma, Weibull and log-normal distributions as
special cases.
Ye and Chen (2017) proposed the method as follows. In the generalized gamma distribution,

the likelihood equations of three parameters can be solved explicitly for α and β when γ = 1.
The solutions of this likelihood equations can be regarded as approximate on ML estimators for
two-parameter gamma distribution. Here we call this estimators the Ye and Chen’s estimators.
In this study, we investigate the properties of the Ye and Chen’s estimators and propose the

method to correct bias of these estimators. Also, we compare with the method of moments
(MM) estimators considering the feature that their likelihood equations can be solved explicitly.

2. Model
We compare the ML estimators obtained by Newton’s method, Ye and Chen’s estimators

and MM estimators. It is known that when the sample size is small, the ML estimators have
large biases. Cox and Snell (1968) gave the procedure to correct the first-order biases of ML
estimators in the general frameworks. This procedure was developed by Cox et al. (1968) and
Cordeiro et al. (1994). We correct both biases of ML estimator and Ye and Chen’s estimator
calculating the asymptotic bias. We confirmed the asymptotic biases are the same as the biases



derived by Johnson (2011). Ye and Chen (2017) also proposed the bias correction of their
new estimator, then we also compare these results with ML estimators and Ye and Chen’s
estimators.

2.1 Maximum Likelihood Estimators

The most popular parameter estimation method is the maximum likelihood (ML) method,
but there are no closed-form expressions for the ML estimators for the two-parameter gamma
distribution. Therefore we use numerical calculation by Newton’s method.

2.2 Ye and Chen’s Estimators

Let Xi ∼ gam(α, βγ), i = 1, 2, ..., n and X1, X2, ..., Xn be in iid. The parameters α and β are
needed to estimate. Here, let us pretend that X follows the above generalized gamma distribu-
tion with unknown γ. Then, the log-likelihood function based on the observed X1, X2, ..., Xn

is

lgg(α, β, γ) = logγ − αγlogβ − logΓ(α) +
1

n

n∑
i=1

[
(αγ − 1)logXi −

(
Xi

β

)γ]
.

The likelihood equations are obtained by taking the partial derivatives of lgg with respect to
α, β and γ, respectively

∂lgg(α, β, γ)

∂α
= −ψ(α)− γlogβ +

γ

n

n∑
i=1

logXi, (3)

∂lgg(α, β, γ)

∂β
= −α +

1

n

n∑
i=1

(
Xi

β

)γ

, (4)

∂lgg(α, β, γ)

∂γ
=

1

γ
+
α

n

n∑
i=1

log

(
Xi

β

)
− 1

n

n∑
i=1

(
Xi

β

)γ

log

(
Xi

β

)
, (5)

where ψ(·) = dlogΓ(x)/dx is the digamma function. Setting these equal to zero and solving
the resulting system of equations gives the ML estimators of (α, β, γ). In particular, by setting
(4) equal to zero, we can express β as a function of α and β :

β(α, β) =

(∑
Xγ

i

nα

)1/γ

. (6)

Substitute the above display into (5) to give

α(γ) =
n
∑
Xγ

i

nγ
∑
Xγ

i logXi − γ
∑

logXi
∑
Xγ

i

. (7)

Now, we consider the gamma distribution. If γ = 1, generalized gamma can be regarded as
gamma. Use this fact in (6) and (7) to obtain the Ye and Chen’s estimators for α and β as

α̃Y =
n
∑
Xi

n
∑
XilogXi −

∑
logXi

∑
Xi

, (8)

β̃Y =
1

n2
(n
∑

XilogXi −
∑

logXi

∑
Xi). (9)



Next, Ye and Chen’s bias correction method is shown as follows. The estimator for the scale
parameter β is

β̃Y
† =

n

n− 1
β̃Y =

1

n(n− 1)

(
n
∑

XilogXi −
∑

logXi

∑
Xi

)
. (10)

While the estimator for 1/α is

α̃−1†
Y =

n

n− 1
α̃−1
Y =

n
∑
XilogXi −

∑
logXi

∑
Xi

(n− 1)
∑
Xi

. (11)

See this detailed proof on Ye and Chen (2017).

2.3 First-Order Bias Correction

The method of bias correction is provided by Cox et al. (1968) and Cordeiro et al. (1994).
Actually we calculate the first-order bias, obtaining the following result.

E(α̂ML − α) =
−2 + αψ(1, α)− α2ψ(2, α)

2n{−1 + αψ(1, α)}2
+O

(
1

n2

)
, (12)

E(β̂ML − β) =
β{ψ(1, α) + αψ(2, α)}
2n{−1 + αψ(1, α)}2

+O
(
1

n2

)
. (13)

This result corresponds to that of Johnson’s (2011).

2.4 Proposed estimator

We propose the estimators that corrects the Ye and Chen’s estimators using bias correction
given by (12) and (13), respectively. Here, we express these estimators α̂Y

∗, α̂Y
∗.

3. Result
Table1 shows the mean of each estimators and Table2 shows the MSE. According to Ye and

Chen (2017), they defined their estimators α̂Y
†, β̂Y

† are unbiased, but under small samples we
find biases. These biases can be reduced by using the method of Cox et al. (1968) and Cordeiro
et al. (1994). Especially, our proposed estimators can be expressed explicitly, the estimators
can be closed-form.
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Table 1: mean of estimators
MLE Ye and Chen’s estimator Proposed MME

α n α̂ML β̂ML α̂ML
∗ β̂ML

∗ α̃Y β̃Y α̃Y
† β̃Y

† αY
∗ βY

∗ αMM βMM

3 9.45 0.68 0.19 0.89 9.46 0.66 6.31 1.00 0.21 0.87 6.59 0.74
5 2.23 0.82 1.00 0.97 2.25 0.80 1.80 1.01 1.02 0.95 2.08 0.83
7 1.62 0.87 1.00 0.98 1.64 0.86 1.40 1.00 1.02 0.97 1.65 0.87

1 9 1.40 0.91 0.99 1.00 1.41 0.90 1.26 1.01 1.01 0.99 1.47 0.91
10 1.35 0.91 1.00 0.99 1.37 0.90 1.23 1.00 1.02 0.98 1.43 0.91
20 1.15 0.95 1.01 0.99 1.16 0.95 1.10 0.99 1.01 0.99 1.21 0.95
30 1.09 0.97 1.00 1.00 1.10 0.97 1.06 1.00 1.01 1.00 1.15 0.96
40 1.06 0.98 1.00 1.00 1.07 0.98 1.04 1.00 1.00 1.00 1.11 0.97
3 47.97 0.68 0.21 0.90 47.98 0.67 31.98 1.01 0.22 0.89 32.22 0.90
5 7.18 0.81 3.00 0.96 7.19 0.80 5.75 1.00 3.01 0.96 6.02 0.94
7 5.00 0.86 2.95 0.98 5.01 0.86 4.30 1.00 2.96 0.98 4.54 0.95

5 9 4.36 0.89 2.98 0.99 4.37 0.89 3.89 1.00 2.99 0.99 4.12 0.97
10 4.20 0.90 3.01 0.99 4.22 0.90 3.80 1.00 3.02 0.99 4.01 0.97
20 3.50 0.95 3.01 0.99 3.51 0.94 3.33 0.99 3.02 0.99 3.47 0.98
30 3.31 0.97 3.00 1.00 3.32 0.97 3.21 1.00 3.01 1.00 3.30 0.99
40 3.22 0.98 2.99 1.00 3.22 0.98 3.14 1.00 3.00 1.00 3.22 0.99
3 127.69 0.68 0.22 0.91 127.71 0.68 85.14 1.02 0.23 0.91 85.39 0.97
5 17.15 0.80 6.99 0.96 17.16 0.80 13.73 1.00 7.00 0.96 13.99 0.98
7 12.01 0.86 6.95 0.98 12.02 0.86 10.30 1.00 6.97 0.98 10.54 0.98

7 9 10.42 0.89 7.02 0.99 10.43 0.89 9.27 1.00 7.03 0.99 9.50 0.99
10 9.79 0.91 6.92 1.00 9.80 0.91 8.82 1.01 6.93 1.00 9.02 0.99
20 8.20 0.95 7.00 1.00 8.20 0.95 7.79 1.00 7.01 1.00 7.93 0.99
30 7.77 0.97 7.02 1.00 7.78 0.97 7.52 1.00 7.02 1.00 7.61 0.99
40 7.55 0.98 7.00 1.00 7.55 0.98 7.36 1.00 7.00 1.00 7.44 1.00

∗ the first-order bias correction
† Ye and Chen’s bias correction

Table 2: MSE
MLE Ye and Chen’s estimator Proposed MME

α n α̂ML β̂ML α̂ML
∗ β̂ML

∗ α̃Y β̃Y α̃Y
† β̃Y

† αY
∗ βY

∗ αMM βMM

3 5.37× 103 0.72 0.65 1.03 5.37× 103 0.68 2.38× 103 1.28 0.69 0.96 2.38× 103 0.69
5 20.37 0.48 3.03 0.61 20.35 0.47 12.66 0.67 3.02 0.59 13.32 0.53
7 2.57 0.34 0.72 0.41 2.61 0.34 1.78 0.43 0.74 0.40 2.30 0.43

1 9 0.92 0.27 0.34 0.32 0.94 0.28 0.68 0.34 0.36 0.32 1.06 0.39
10 0.69 0.25 0.28 0.29 0.71 0.25 0.52 0.30 0.29 0.28 0.85 0.35
20 0.16 0.12 0.10 0.13 0.17 0.13 0.14 0.14 0.10 0.13 0.26 0.20
30 0.08 0.08 0.06 0.09 0.09 0.09 0.08 0.09 0.06 0.09 0.16 0.14
40 0.05 0.06 0.04 0.06 0.05 0.06 0.05 0.07 0.04 0.07 0.11 0.11
3 8.50× 105 0.61 7.77 0.89 8.50× 105 0.60 3.78× 105 1.11 7.99 0.87 3.78× 105 0.84
5 229.37 0.39 33.92 0.50 228.74 0.39 142.73 0.55 33.67 0.50 143.59 0.53
7 23.41 0.28 6.35 0.33 23.40 0.28 15.89 0.35 6.33 0.34 16.99 0.38

5 9 10.17 0.22 3.71 0.26 10.28 0.23 7.42 0.27 3.77 0.26 8.55 0.31
10 8.01 0.20 3.22 0.23 8.09 0.21 5.98 0.24 3.26 0.24 6.90 0.28
20 1.70 0.10 1.05 0.11 1.73 0.10 1.44 0.11 1.07 0.11 1.85 0.14
30 0.89 0.07 0.64 0.07 0.91 0.07 0.80 0.08 0.66 0.07 1.07 0.10
40 0.59 0.05 0.47 0.06 0.60 0.05 0.55 0.06 0.48 0.06 0.73 0.07
3 6.01× 106 0.61 45.99 0.91 6.01× 106 0.61 2.69× 106 1.14 46.71 0.90 2.69× 106 0.98
5 1614.86 0.38 241.92 0.49 1612.60 0.38 1011.27 0.53 241.03 0.49 1011.55 0.52
7 138.88 0.27 37.17 0.33 139.08 0.27 94.58 0.34 37.28 0.33 97.59 0.35

7 9 65.92 0.22 24.10 0.25 66.04 0.22 48.04 0.26 24.16 0.25 50.22 0.28
10 43.26 0.19 17.40 0.22 43.39 0.19 32.11 0.23 17.48 0.22 34.05 0.25
20 9.65 0.10 5.94 0.11 9.73 0.10 8.11 0.11 6.00 0.11 9.09 0.12
30 5.24 0.07 3.76 0.07 5.29 0.07 4.65 0.07 3.80 0.07 5.27 0.08
40 3.42 0.05 2.67 0.05 3.45 0.05 3.12 0.05 2.70 0.05 3.56 0.06

∗ the first-order bias correction
† Ye and Chen’s bias correction



 

Random Search Algorithm for Optimal Mixture 

Experimental Design 

 

Chongqi ZHANG_ and Guanghui LI 
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Abstract: It is well known that it is difficult to obtain accurate optimal 

design for mixture experimental design with complex constraints. In this 

paper, we construct a random search algorithm which can be used to find 

the optimal design for mixture model with complex constraints. First, we 

generate an initial set by the Monte-Carlo method, and then run the 

random search algorithm to get the optimal set of points. After that, we 

explain the effectiveness of this method by using two examples. Finally, 

we discuss some applications of this random search algorithm in other 

models. 

Keywords: Information matrix, Optimal design, Random search Random 

mixture points. 
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MEASURING AND ANALYZING INTERCULTURAL COMPETENCE 

 

Sari HOSOYA 
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1. Introduction 

     Due to the mobility of people and interdependence in global world, 
our society now is characterized with diversity more than before.  
Although people have learned a lot from people who belong to the society 
with different values and knowledge, we seem to be reluctant to accept 
such diversities nowadays.  While there are people who enjoy differences 
and benefit from them, others attempt to reject and exclude people with 
different background.  It seems that people needs a certain kind of 
competence to live positively in the society with increased diversity.  
Intercultural competence and sensitivity towards diversity are needed in 
order to function in multicultural contexts, and this competence can be 
obtained through education.  
     In the field of education, statistical analysis is often used for 
analysing quantitative data, such as test scores.  However, very often we 
also need to analyze qualitative data such as the ones referring to human 
quality.  This research is one example of our attempt to measure and 
analyze intercultural competence, one of the qualitative data. 

 

2. Intercultural Competence 

     According to UNESCO definition, Intercultural Competences are 
explained as follows:  Having adequate relevant knowledge about 
particular cultures, as well as general knowledge about the sorts of issues 
arising when members of different cultures interact, that encourage 
establishing and maintaining contact with diverse others as well as 
having the skills required to draw upon both knowledge and attitudes 
when interacting with others from different cultures. (UNESCO, 2013, 
p.16) 



     Suppose we need to cultivate such competence through the process 
of education, it is important that we can somehow assess and evaluate 
such abilities.  In the process of measuring the competence, we need to 
clarify the elements which consist this particular competence.  Drawing 
upon the theories of intercultural/multicultural education and 
intercultural communication, I attempt to collect characteristics of those 
who seem to function well in the diverse society.  In this presentation I 
will introduce the characteristics and will focus how qualitative data can 
be transformed to measureable data in order to operationalize the 
analysis. 
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Abstract: This paper considers the self-weighted quasi-maximum 

likelihood estimation (QMLE) of the double autoregressive (DAR) model 

with null volatility coefficients and derives the asymptotic distribution 

under the mild conditions, which is a projection of a normal vector onto a 

convex cone by a quadratic approximation. A practical implication of this 

result concerns the estimation of over-identified DAR models. Further, 

testing the nullity of volatility coefficients are also studied. This problem 

is nonstandard since the self-weighted QMLE is subject to positivity 

constraints. Three classical tests, i.e., the Wald, Lagrange multiplier and 

quasi-likelihood ratio tests, are studied as well as their asymptotic null and 

local alternative distributions. Under fixed alternatives, efficiency 

performance are investigated. Two cases of special interest are tests of the 

null hypothesis of one coefficient equal to zero and tests of the null 



hypothesis of no conditional heteroscedasticity. Monte Carlo simulation 

studies are carried out to assess the performance of the self-weighted 

QMLE and three tests in finite samples. Finally, an empirical example is 

given for illustrating the usefulness of our proposed approach. 

 



A COMPARISON STUDY OF RULE SPACE METHOD AND

NEURAL NETWORK MODEL FOR LEARNING DIAGNOSIS

AND IT'S AN APPLICATION

Atsuhiro HAYASHI
Nagoya Institute of Technology
Nagoya, Aichi, 466-8555, Japan

1. Introduction
   Both methods, Rule Space Method (RSM) and Neural Network Model (NNM) are
techniques of statistical pattern recognition and classification approaches developed
from different fields; one is for behavioral and the other is for neural sciences.
   RSM  is  a  technique  of  clustering  examinees  into  one  of  the  predetermined  latent
Knowledge States (KS) that are derived logically from an expert's hypotheses about how
students learn. RSM uses the multivariate decision theory to classify individuals, and
NNM that is considered as a nonlinear regression method uses the middle layer of the
network structure as classification results. We have found that there two methods are
similarities between the results from the two approaches, and moreover they have
complementary characteristics when applied in practice.
   In  this  paper,  we  discuss  the  comparisons  of  both  approaches  by  focusing  on  the
structure of the NNM and of KSs in the RSM. And we show an application result for a
reasoning test.

2. Rule Space Method
   RSM is a technique developed in the domain of the cognitive science. It starts from
the use of an incidence matrix Q that characterizes the underlying cognitive processes
and  knowledge  (Attribute)  involved  in  each  Item.  It  is  a  grasping  method  of  each
examinee's mastered/non-mastered learning level (Knowledge State, KS) from item
response patterns, and a list of all the possible KSs can be generated algorithmically by
applying Boolean Algebra to the incidence matrix Q. This method is fairly new but has
lately started getting some attention because it is possible to provide diagnostic scoring
reports for a large-scale assessment.
   Up to now, the results of examinees' performance on a test are reported by total
scores or scaled scores. However, if this technique is used in educational practices, it is
possible to report which attributes each student mastered or non-mastered, in addition
to  his/her  total  scores.  It  is  often  true  that  the  same  total  score  may  have  several
different KSs. By reporting detailed information of his/her KS, learning can be
facilitated more effectively than just providing total scores only.



3. Feed-Forward Neural Network Model
   In spite of that the mathematical formulization of the Feed-Forward NNM is simple,
almost any nonlinear function can be approximated by selecting deferent numbers of
middle layers and connections between neurons. When we apply this technique to
existing data obtained from learning processes, we can use this model to search for the
strategy of any joint intensity between units.
   From a statistical point of view, NNM is a nonlinear regression model. In this paper
Feed-Forward NNM is considered as a model-fitting procedure to estimate the optimum
values of the parameters in the regression model.
   This procedure is called parameter estimation in statistics, but is called a learning
algorithm in NNM. One of the learning algorithms commonly used is Back Propagation
(BP)  that  is  a  learning  method  by  passing  on  errors  to  previous  layers.  BP  is  an
adaptation of the steepest descent method to the NNM field. This method has a
reducible faculty of the convergence to the local minimum point.

4. Science Reasoning Test
   The Science Reasoning Test (SR-Test) is an entrance examination test that measures
the student's interpretation, analysis, evaluation, reasoning, and problem-solving skills
required in the natural sciences.
   Since we got the ACT's (American College Testing, Inc.) cooperation, we used one
open-form of their ACT Assessment tests for our experimentation. The test is based on
units containing scientific information and a set of multiple choice questions about the
scientific information. Calculators are not permitted to be used for the test. The
scientific information for the test is provided in one of three types of formats.
   The first format, data representation, presents graphic and tabular material similar
to that found in science journals and texts. The questions associated with these format
measure skills such as graph reading, interpretation of scatter plots, and interpretation
of information presented in tables. The second format, research summaries, provides
students with descriptions of one or more related experiments. The questions focus
upon the design of experiments and interpretation of experimental results. The third
format, conflicting viewpoints, presents students with expressions of several hypotheses
or views that, being based on differing premises or on incomplete data, are inconsistent
with one another. The questions focus upon the understanding, analysis, and
comparison of alternative viewpoints or hypotheses.
   The SR-Test questions require students to use scientific reasoning to answer the
questions. The students are required to recognize and understand the basic features of,
and concepts related to, the provided information; to critically examine the
relationships between the information provided and the conclusions drawn or
hypotheses developed; and to generalize from given information to gain new
information, draw conclusions, or make predictions.



5. Numerical Examples
   We applied the RSM to a data of fraction addition problems, and got a tree structure
for  the  KS.  We  related  RSM that  derives  the  KS from an  incidence  matrix  Q,  to  the
Feed-Forward NNM. For that, we designed the network of the three-layer structure in
which items were assigned to the input layer and Attributes were to the output layer.
The KSs in the RSM were considered to correspond to the middle layers of NNM. We
applied several numerical examples to the both methods, and found close similarities in
their results although they were not identical.
   And we applied the RSM to a data of SR-Test of 286 Japanese students. The number
of attributes and items are 12 and 18, respectively. Figure 1 is the tree representation of
the KSs that shows the examinee's mastered/non-mastered learning level. In this figure,
each  circle  is  the  KS,  and  the  numbers  in  the  circle  are  the  IDs  of  non-mastered
attribute. Or the number in the parenthesis is the number of examinee classified in this
KS. We can find the fact that the main solving attribute IDs are 6, 8 and 9, and
secondary  attribute  are  2  and  5.  The  total  examinee  classified  in  these  KSs  is  225,
which is about 80% of all. The main streams to reach the full mastered state are three
KSs of left-hand side in the third layer from the top.

Figure 1. A tree representation of Knowledge States for the SR-Test data



6. Discussion and Conclusions
   We investigated the relationship between the characteristics of the middle layer of
NNM  and  the  Knowledge  States  in  the  RSM,  and  discussed  their  similarities  and
usefulness at the weaknesses existing in the RSM.
   It is well known that the composition of an incidence matrix Q in the RSM is a very
laborious task, requires experts' intense cooperation. The experts identify attributes
involved in each item and express them in an incidence matrix Q. It needs to investigate
multiple numbers of solution strategies for each item. This is extremely hard work. If an
examinee's mastering level (cluster) is known to some extent from past experiences, it is
also possible to construct a network in which these clusters are assigned to the output
layer of NNM. The middle layer drawn from this model is expected to correspond to
Attributes. It may be possible to use this result for replacing a task analysis required in
making an incidence matrix Q in RSM.
   We plan to clarify the difference and similarities of the two models with numerical
examples,  or  will  apply  to  this  problem the  technique  of  the  deep  learning  in  the  AI
fields.
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IDENTIFIABILITY AND ESTIMATION OF CAUSAL MEDIATION EFFECTS 

WITH MISSING DATA 

Wei LI 
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Abstract: Mediation analysis is a standard approach to understanding 

how and why an intervention works in social and medical sciences. 

However, the presence of missing data, especially missing not at random 

data, poses a great challenge for the applicability of this approach in 

practice. Current methods for handling such missingness are still lacking 

in causal mediation analysis. In this article, we first show the identifiability 

of causal mediation effects with different types of missing outcomes 

under different missingness mechanisms. We then provide corresponding 

approaches for estimation and inference. Especially for missing not at 

random data, we develop an estimating-equation-based approach to 

estimate causal mediation effects, which can easily handle different types 

of mediators and outcomes, and we also establish the asymptotic results 

of the estimators. Simulation results show good performance for the 

proposed estimators in finite samples. Finally, we use a real data set from 

the Clinical Antipsychotic Trials of Intervention Effectiveness research for 

Alzheimer's Disease to illustrate our approach. 
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1. Introduction 

On March 11, 2011, a massive amount of radioactive material was released from Tokyo Electric Power 

Company’s Fukushima Daiichi Nuclear Power Station (NPS). This accident caused serious damage to 

both economic and social development, as well as caused a wide range of problems in the environment 

and in food production. Although six years have passed since the accident, there is still intense 

concern about the influence of radioactive contamination, and high air dose rates and high 

concentrations of radionuclides are still found in certain areas around the NPS [2]. The Nuclear 

Regulation Authority (NRA), Japan, inaugurated the Comprehensive Radiation Monitoring Plan on 

August 2, 2011 [1]. One aim of this project is to analyze the distribution of radiation doses and 

radioactive materials, principally in residential areas, on a mid- to long-term basis. Related ministries 

and agencies, local government bodies, nuclear operators, and related companies have been 

conducting radiation monitoring in a cooperative manner. In this study, we focused on air radiation 

dose rate data measuring by monitoring posts. These monitoring posts are equipped with air radiation 

dose rate measuring devices at fixed locations, with data obtained at 1 m above the ground. 

Approximately 4,400 monitors are installed in Japan as of October 1, 2017, and the Fukushima 

Prefecture accounts for over 80% more. Data is logged every ten minutes and stored continuously. The 

data is openly available at NRA web site. However, it is difficult to monitor areal trends in the 

radiation pollution, because the monitoring posts are very sparsely scattered. In this study, we apply a 

technique of spatial interpolation for compensating for the small number of observations and attempt 

to visualize the spatial distribution of air dose rate. 

 

2. Materials 

The study area chosen has the highest level of radiation contamination in Fukushima Prefecture. We 

used regularly arranged 10 km	ൈ	10 km meshes designed by the administrative organ covering the 

range within 37.333 degrees north latitude, 140.625 degrees east longitude, 37.667 degrees north 

latitude, and 141.050 degrees east longitude, containing most of the three levels of the evacuation 

area that the Japanese government has recognized. In addition, we set January 10, 2013 as the study 

period. We removed some false data caused by instrument anomalies, as announced on the NRA 

website, and finally the total number of monitoring posts we used was 212 at that time. Figure 1 

shows the study area, the location of the Fukushima Daiichi NPS and the monitoring posts on 

January 10, 2013. Mean daily air dose rates with 10-min data aggregated into daily intervals were 



used as the analysis object in this study. 

 
Figure 1. Study area divided most of the three levels of the evacuation area into 10 km ൈ 10 km meshes, 

with the Fukushima Daiichi NPS and the location of each monitoring post on January 10, 2013. 

 

3. Spatial interpolation 

It is difficult to see the trend of the distribution of the air dose rate under these conditions, because the 

monitoring posts of the study area are very sparsely scattered. Accordingly, we attempt to increase the 

location of the analysis object by using the spatial interpolation, i.e., ordinary kriging. First, we 

redivided the study area into smaller 500 m ൈ 500 m meshes and assigned an air dose rate value to 

each of the mesh based on the corresponding post location. If two or more posts were installed in one 

mesh, the mesh was assigned their mean value. Figure 2 shows the division of data into the 5,440 

meshes and the assigned values of air dose rate. 

 
Figure 2. Study area redivided into 500 m ൈ 500 m meshes and the assigned value of air dose rate. 



To improve kriging precision, the observations were normalized using a Box-cox transformation 

ߣ) ൌ െ0.18), and we used a model based on an anisotropic variogram. That is, by assuming a 

geometric anisotropy, we constructed isotropic spatial processes by performing coordinate conversion 

based on the rotation angle of the coordinates and the anisotropy ratio. To estimate a distance 

between two arbitrary points without directly measuring the distances between the points (the center 

of gravity position of each mesh), the experimental variogram is assumed, and the theoretical 

variogram is applied to it. The experimental variogram is defined as 
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where ߛ∗ሺܐሻ is dissimilarity depending on the intercentral distance ‖ܐ‖	of each mesh, ݖሺܠ௜ሻ and 

௝൯ܠ൫ݖ  are sample data at two points ܠ௜  and ܠ௝ . Moreover, ܰሺܐሻ ൌ ൛൫ܠ௜, ௝൯ܠ ∶ ௜ܠ െ ௝ܠ ൌ ,݅	for	ܐ ݆ ൌ

1,2, … , ݊ൟ	is the set of all pairs of points with ܐ, and |ܰሺܐሻ| is the number of pairs in ܰሺܐሻ. We must 

fit a variogram function ߛ	to an experimental variogram γ∗, i.e., replace an experimental variogram 

with a theoretical variogram that is a suitable valid function. In this study, we attempted to apply the 

Matérn model which defined by the following parametric model, 
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with the smoothness parameter ݇ varying from 0 to ∞, gamma function Γሺ∙ሻ, and modified Bessel 

function ܭ௞ሺ∙ሻ. Furthermore, the three parameters, ߠ଴, ߠଵ, and ߠଶ relate to nugget, sill and range, 

respectively, i.e., the nugget ߠ଴ is defined by ߛሺܐሻ as ‖ܐ‖ ൌ 0, the sill ߠ଴ ൅ ଵ is the value γሺ∞ሻߠ ൌ

lim‖ܐ‖⟶ஶ  ሻ exceeds the sill value for the firstܐሺߛ ଶ is the distance at which theߠ ሻ, and the rangeܐሺߛ

time. To estimate these parameters, we used likelihood-based parameter estimation methods, viz., 

maximum likelihood (ML) and restricted maximum likelihood (REML). These methods can be used 

with Gaussian random fields, and we normalized our data using the Box-cox transformation. ML and 

REML are available as an R-package geoR [3] from the statistical software R. Table 1 shows the 

estimated parameters and AIC values for ML and REML in isotropic and anisotropic situations. 

Hence, taking the models with the lowest AIC yields the Matérn model, whose parameters, estimated 

using the REML method in the anisotropic situation, have the “best” fit. 

 ଶ ݇ Rotationߠ ଵߠ ଴ߠ  
angle 

Anisotropy 
ratio AIC 

ML 
Isotropic 0.16 3.34 21.45 0.98 െ െ 236.0

Anisotropic 0.13 2.09 16.75 0.85 149.89 3.57 212.3

REML 
Isotropic 0.15 5.46 32.46 0.90 െ െ 228.6

Anisotropic 0.13 3.46 26.78 0.78 149.94 3.52 204.9
Table 1. Estimated parameters using ML or REML in isotropic and anisotropic situations, and their respective AICs. 

In this study, we implemented an ordinary kriging based on intrinsically stationary and isotropy 

assumptions, which is often used as the kriging method, to predict each air dose rate value for 500 m 

ൈ 500 m meshes. The ordinary kriging predictor ܼ∗ሺܠ଴ሻ of the value at ܠ଴ is given by the linear 



combination of ܼሺܠሻ evaluated at each sample ܠ௜; ݅ ൌ 1,2, … , ݊. 

ܼ∗ሺܠ଴ሻ ൌ෍߱௜ܼሺܠ௜ሻ
௡

௜ୀଵ

 

where ߱௜, i ൌ 1,2, … , ݊ provides the unknown weights corresponding to the influence of the variable 

ܼሺܠሻ. We can obtain the dissimilarity value between the point ܠ଴ and the ݅-th observed point by using 

the estimated variogram model. Under the restriction conditions of ∑ ߱௜
௡
௜ୀଵ ൌ 1, the computation of 

ܼ∗ሺܠ଴ሻ is conducted using the Lagrange multiplier. The predicted map is shown in the Figure 3. 

 
Figure 3. The predicted map of air dose rate obtained by ordinary kriging at January 10, 2013. 

4. Conclusion and Future work 

This article has presented the radiation pollution map using the spatial interpolation technique based 

on the monitoring post data of air dose rate, which installed sparsely. We assumed the intrinsically 

stationary, and performed coordinate transformation for the isotropic spatial processes. The locations 

with high dose rate did not spread in concentric fashion from the NPS but the direction of northwest. 

However, the around of extremely high rate mesh might be estimated lower than actual rate as a 

possible influence. About a strict validation of the stationary in our situation needs more discussion. 

In the future work, we would like to apply these techniques for some different days and investigate 

the temporal and spatial trends of radiation pollution. 
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STATISTICAL GAIT ANALYSIS BASED ON
THE DATA SET FROM GLASSES INSTALLED WITH IMU
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Graduate School of Science and Engineering, Chuo University

Tokyo 112-8551, Japan

1. Introduction
Walking is indispensable for human beings to behave activity in daily life. Then, gait analysis

is so important to measure the activities. Gait analysis is usually based on video images or the
motion capture, but it requires not only the expensive facilities also vast calculations assuming
bionic model. With recent technical innovations, we can use wearable small devices installed
with the gravity accelated sensors and gyro sensor.
To enable precise detection of physical states of human in daily life, we suggest to measure

the body axis in gait. The body axis of human being can be known as the balance and the
power of the body. In this study, we propose a system for measuring gait with body axis using
glasses type device with IMU (which combined with three-axis accelerometer and three-axis
gyroscope). With this system, we could know the person’s gait is normal or not easily.

2. Methods
2.1 Signal Processing

The raw data have many noises. As a preprocessing for analysis, we should remove the noises.
On this time, raw data is converted by fourier transform to remove the noises (unnecessary
information) as Low Pass Filter(LPF).

2.1.1 Fourier Transform

The fourier transform decomposes a function of time (a signal) into the frequencies that consti-
tute it. The fourier transform of a function of time is a complex-valued function of frequency.
The Fourier transform is given in the following expressions.

F (ω) =

∫ ∞

−∞
f (t) e−iωtdt,

where ω can express frequency in angular frequencies then with ω = 2πf .
There is also inverse transform. The inverse transform is given in the following expressions.

f (t) =
1

2π

∫ ∞

−∞
F (ω) eiωtdt.

2.2 Logistic Regression

The logistic regression model is used to predict binary (0/1) response: normalor avnormal
walking. The logit fuction can be written as following form.

logit(pi) = ln

(
pi

1− pi

)
= α + β1x1,i + · · ·+ βkxk,i,

(i = 1, . . . , n),

let xibe the explanatory variable. The regression coefficients α and β are estimated using
maximum likelihood estimation.



3. Experiment
We used JINS MEME to measure the gait. It is a measurement device with IMU. This device

is a pair of glasses so that easy to bring and to use. The IMU mounted in the eye-wear measures
the body motion. As the sensor located near the head is on the top of the body axis, this eye-
wear is suitable to measure movements or shift of center of gravity during physical exercises
with a high precision. We take normal walking 3 times per person. Subject’s face is forward
to its front. The abnormal experiments were conducted for three subjects as follows: walking
with smartphone used (the abnormal walking A), dragging a foot (the abnormal walking B)
and watching somewhere (the abnormal walking C). Each walking is about 10 steps, and for
confirmation, we also used the video to take movies for recording.

4. Results and Discussions
The results of analyzing data processed by logistic regression are shown in the following table,

Table 1: classification table``````````````̀Prediction
Observation

Normal Abnormal

Normal 8 1
Abnormal 1 8

From the above results, we were able to discriminate whether walking is abnormal or not.
The normal walking and the abnormal walking B are quite different, but we cannot tell the
abnormal walking C from the normal walking. That is the reason of misclassification. The
result from the head moving data set are comparatively good considering that the error rate is
so small in our experiment.

5. Conclusion
In this study, we used the eye-wear device with IMU for gait analysis and get good results.

We must develop the system to be able to analyze the streaming data in real time in the future.
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COVARIATE-ADJUSTED ASSOCIATION STUDIES BASED
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Abstract

It is more and more important to consider the dependence structure among multiple testings, especially for

the genome-wide association studies (GWAS). Sun and Cai (JRSSB, 2009) proposed a large-scale multiple testing

procedure to test HMM-dependent hypotheses under the framework of compound decision-theory, which was suc-

cessfully applied to GWAS by Wei et al. (Bioinformatics, 2009). However, the fact that the etiology of complex

diseases not only with respect to the genetic effect, but also the environmental factors. Failure to account for the

covariates can produce misleading bias of the association of interest, or suffer from loss of testing efficiency. In this

paper, we develop a covariate-adjusted multiple testing procedure, called covariate-adjusted local index of signifi-

cance (CALIS), to account for the effects of environmental factors in GWAS via a double-chain HMM. Theoretic

results show that our CALIS can control the false discovery rate (FDR) at the nominal level and has the smallest

false negative rate (FNR) among all valid FDR procedures. We further demonstrate the advantage of our CALIS

over the procedure LIS of Sun and Cai (2009) by simulation studies and a real data analysis.
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1  Introduction 

There are many surveys that research impressions such as brand image, global attitude and university ranking. 

We sometime meet problems in which we wish to reduce the number of items (questions/variables) to save time and 

cost or select a reasonable subset of questions to find core items in the survey. For such cases, in general, because 

collected data in such surveys consist of categorical variables, we consider item (variable) selection for qualitative 

data.  

To select a subset of categorical variables, we can consider the following two approaches: first is a variable 

selection in nonlinear principal component analysis (NLPCA), which has been proposed by Mori et al. (2017). This 

is a selection method for mixed measurement level data and then can be easily applied to categorical data in surveys; 

second is to select a subset by using Item Response Theory (IRT). Since there are several studies that analyze 

characteristics of items and latent abilities of respondents in impression survey by IRT as all responses are converted 

to binary data (0, 1), we may select a subset so as to keep information on items or responses estimated by IRT as 

much as possible. So we will propose item selection using IRT.  

In this paper we apply these two selection methods to survey data and demonstrate the performance of the 

methods in numerical examples.   

 

2  Item selection methods for impression survey 

2.1 Variable selection in nonlinear PCA   

   Mori et al. (2017) proposed variable selection in NLPCA for mixed measurement level data. This method 

combines NLPCA using the alternating least squares with optimal sealing (e.g., Young et al., 1978; Gifi, 1990) and 

Modified PCA (M.PCA, Tanaka and Mori, 1997), that is, the eigenvalue problem (EVP) in ordinary NLPCA is 

replaced by that in M.PCA. 

Suppose we have an pn  data matrix Y (that consists of categorical variables). Let Y be decomposed into an 

qn  submatrix Y1 and )( qpn   submatrix Y2 ( pq 1 ), and the covariance matrix of Y= (Y1, Y2) is denoted 

as 








2221

1211

SS

SS
. M.PCA is intended to derive r principal components (PCs) Z that are computed using Y1 and 

represent all variables as much as possible, i.e., Z=Y1A ( qr 1 ), where A= ),,,( 21 raaa  is derived by an EVP, 



  0 )( 112112
2
11  aSSSS  , so as to maximize the prediction efficiency based on Rao (1964) (criterion 1) or the 

RV-coefficient based on Robert and Escoufier (1976) (criterion 2). This naturally leads to specifying the best subset 

of q variables. Here we implement this M.PCA selection procedure to NLPCA algorithm, PRINCIPALS (Young et 

al., 1978) as follows: for a given initial data matrix Y*(0)=(Y1
*(0), Y2

*(0)), where the super script * denotes an 

appropriately quantified data matrix and (t) is the t-th iteration, the following two steps are iterated until 

convergence:  

 ・Model estimation step: From Y*(t)=(Y1
*(t), Y2

*(t)), obtain A(t) by solving the above EVP and compute Z(t) from 

Z(t)=Y1
*(t)A(t). 

 ・Optimal scaling step: Calculate T)()()1(ˆ ttt
AZY   using A(t) and Z(t) found in Mode estimation step and find 

Y*(t+1) such that Y*(t+1)= argmin tr )ˆ()ˆ( )1()*(T)1()*(   tttt
YYYY  for fixed )1(ˆ t

Y . 

Y*=(Y1
*,Y2

*) obtained after convenience is an optimally scaled matrix of Y and variables corresponding to Y1
*are 

the best subsets of size q. We can apply this variable selection procedure, so called nonlinear M.PCA (NL-M.PCA), 

to impression survey data to select reasonable items. 

 

2.2  Item selection in IRT 

   There are some studies in which IRT is applied to impression survey data. For test data we ordinarily select 

items from an item pool, but there is no item pool for impression survey because we cannot easily make many 

different types of questions about the same image. Therefore we have to use collected responses in each survey to 

select a subset of items. Here we focus on latent abilities of respondents estimated by IRT, that is, we select a subset 

of items which represents information on latent abilities estimated from all items as much as possible. There are 

two possibilities as selection criteria: latent ability scores and rank of the scores.  

To estimate the latent ability of the i-th respondent )1( ni  , i , we use the 2-Parameter Logistic IRT model, 

)](7.1exp[1

1
)(

jij

ij
ba

P





 , where )( ijP   is the probability of correct response for the j-th item on i

)1( pj  , and ja  item discrimination and jb  item difficulty of the j-th item. Let )( pi and )(qi  denote the 

latent ability based on all p items and q items selected among p items, respectively. We can find the best subset of  

q items among all possible qp C  subsets, whose information on )(qi ’s is mostly closed to that on )( pi ’s. We 

here measure the closeness between )( pi  and )(qi  by the difference of scores, 



n

i

qipiqd
1

2
)()( )(  , and the 

rank correlation of scores, ),( )()( qipiq    where  ( ) is the rank correlation coefficient. We call this item 

selection in IRT.  

We find a reasonable subset which has the smallest qd or the largest q . 
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3  Numerical examples 

We have two types of data: first one is “Global Attitudes and Trends in Spring 2015” (Pew Research Center, 

2015) which collects information on social issues, public opinion and other trends from 40 countries. We extracted 

800 individuals and 27 questions with 4 to 7 levels from the original data; second is “Department Image survey” 

(Mori et al., 2014) which consists of 258 university students and 12 questions asking their images on curriculum 

and support of the department (all items have four levels but they were transformed to binary data so as to be 

analyzed by IRT).  

We apply NL-M.PCA to Global Attitude data because this data have multiple levels and are suitable for analysis 

by NL-M.PCA. Table 1 is the result of variable selection using criterion 1 with r=5 by backward elimination. Fig1. 

shows the change of proportion P. The results illustrate that the proportion changes slightly until the number of 

items is 12. When q=21, for example, 21 items except for items {8, 9, 10, 12, 14, 18} are suggested to be selected, 

because they have the closest information on the proportion to all items (0.6273 for selected 21 items and 0.6337 

for all items). The result suggests that these items which have a relation to daily life, climate, economics and political 

situation can be selected a reasonable subset of size 21. 

 

Table 1  Selection results (NL-M.PCA, Global Attitude data, Backward, r=5, Proportion P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig 1. Change of P 

 

q P

27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 0.6337

26 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 10 0.6334

25 1 2 3 4 5 6 7 8 9 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 10 12 0.6325

24 1 2 3 4 5 6 7 9 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 10 12 0.6314

23 1 2 3 4 5 6 7 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 9 10 12 0.6304

22 1 2 3 4 5 6 7 11 13 14 15 16 17 19 20 21 22 23 24 25 26 27 8 9 10 12 18 0.6290

21 1 2 3 4 5 6 7 11 13 15 16 17 19 20 21 22 23 24 25 26 27 8 9 10 12 14 18 0.6273

20 1 2 3 4 5 7 11 13 15 16 17 19 20 21 22 23 24 25 26 27 6 8 9 10 12 14 18 0.6251

19 1 2 3 4 5 7 11 13 15 17 19 20 21 22 23 24 25 26 27 6 8 9 10 12 14 16 18 0.6227

18 1 2 3 4 5 7 11 15 17 19 20 21 22 23 24 25 26 27 6 8 9 10 12 13 14 16 18 0.6201

17 1 2 3 4 5 7 11 15 17 19 21 22 23 24 25 26 27 6 8 9 10 12 13 14 16 18 20 0.6172

16 1 2 3 5 7 11 15 17 19 21 22 23 24 25 26 27 4 6 8 9 10 12 13 14 16 18 20 0.6141

15 1 2 3 5 7 11 15 17 19 21 22 23 24 25 26 4 6 8 9 10 12 13 14 16 18 20 27 0.6108

14 1 2 3 5 7 11 15 17 19 22 23 24 25 26 4 6 8 9 10 12 13 14 16 18 20 21 27 0.6074

13 2 3 5 7 11 15 17 19 22 23 24 25 26 1 4 6 8 9 10 12 13 14 16 18 20 21 27 0.6019

12 2 3 5 7 11 15 17 19 23 24 25 26 1 4 6 8 9 10 12 13 14 16 18 20 21 22 27 0.5962

11 2 3 5 7 11 15 19 23 24 25 26 1 4 6 8 9 10 12 13 14 16 17 18 20 21 22 27 0.5881

10 2 5 7 11 15 19 23 24 25 26 1 3 4 6 8 9 10 12 13 14 16 17 18 20 21 22 27 0.5793

9 2 5 7 11 15 19 23 24 25 1 3 4 6 8 9 10 12 13 14 16 17 18 20 21 22 26 27 0.5703

8 2 5 11 15 19 23 24 25 1 3 4 6 7 8 9 10 12 13 14 16 17 18 20 21 22 26 27 0.5577

7 2 5 11 19 23 24 25 1 3 4 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 26 27 0.5328

6 2 5 11 19 23 24 1 3 4 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 25 26 27 0.5062

5 2 5 11 19 24 1 3 4 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 23 25 26 27 0.4377

Y1    |     Y2



Table 2  Selection results (Item selection in IRT, Department Image data, Backward, left: dq, right: q ) 

 

 

 

 

 

 

Next, we apply item selection in IRT to Department Image data. The left table in Table 2 shows the selection 

results based on qd and the right q . Both criteria selected similar items. When q=8, for example, items {2, 3, 4, 

5, 6, 7, 10, 12} are selected which are questions about curriculum in the department while deleted four items are 

about departmental support although one item is about curriculum.  

 

4  Concluding remarks 

We proposed two selection methods of item selection for impression survey data. One is a variable selection in 

nonlinear PCA with M.PCA criteria. We applied the method to data which have multiple levels. We obtained 

reasonable results of item selection from impression survey data with multiple levels. Other is an item selection in 

IRT that we proposed from the idea of analysis of impression survey on university department by IRT. We applied 

this method to binary response data and selected items based on respondent ability and its rank. The results suggested 

which items are selected in the context of respondent ability.  

Future problems are to interpret the results in detail, to evaluate the performance in more real examples, and 

consider reasonable recommendations on how to use the methods. 
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q ρq

12 1 2 3 4 5 6 7 8 9 10 11 12 -

11 1 2 3 4 5 6 7 8 10 11 12 9 0.9954

10 1 2 3 4 5 6 7 8 10 12 9 11 0.9883

9 1 2 3 4 5 6 7 10 12 8 9 11 0.9773

8 2 3 4 5 6 7 10 12 1 8 9 11 0.9659

7 2 3 4 5 6 7 12 1 8 9 10 11 0.9541

6 2 3 5 6 7 12 1 4 8 9 10 11 0.9361

5 2 3 5 6 12 1 4 7 8 9 10 11 0.9109

4 2 3 6 12 1 4 5 7 8 9 10 11 0.8736

3 3 6 12 1 2 4 5 7 8 9 10 11 0.8239

2 3 6 1 2 4 5 7 8 9 10 11 12 0.7706

Y1    |     Y2q d q

12 1 2 3 4 5 6 7 8 9 10 11 12 -

11 1 2 3 4 5 6 7 8 10 11 12 9 1.6077

10 1 2 3 4 5 6 7 8 10 12 9 11 3.8940

9 2 3 4 5 6 7 8 10 12 1 9 11 7.1607

8 2 3 4 5 6 7 10 12 1 8 9 11 10.6146

7 2 3 4 5 6 7 12 1 8 9 10 11 14.9702

6 3 4 5 6 7 12 1 2 8 9 10 11 19.4241

5 3 4 5 6 12 1 2 7 8 9 10 11 25.3764

4 3 4 5 6 1 2 7 8 9 10 11 12 35.0666

3 3 5 6 1 2 4 7 8 9 10 11 12 46.9073

2 3 6 1 2 4 5 7 8 9 10 11 12 68.0698

Y1    |     Y2



ON THE OPTIMAL DETECTION BOUNDARY OF SINGLE INDEX MODELS 
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Abstract: Inspired by our previous work in sliced inverse regression, we 

have advocated that single/multiple index models could be studied in depth 

as the linear regression. In this talk we will report a further support 

evidence, i.e., we show that the minimal level of the generalized signal to 

noise ratio defined for index models matches that of SNR for the linear 

regression. 

 



CLUSTERING OF MULTIVARIATE CATEGORICAL DATA
VIA PENALIZED LATENT CLASS ANALYSIS WITH

DIMENSION REDUCTION
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1 Introduction

Multivariate categorical data are commonly observed and analyzed in many scientific application fields:
behavioral and social research, biosciences, and document classification. One of the purposes of analyzing
categorical data, as well as continuous data, is the partitioning objects that have categorical features into
several unpredefined homogeneous groups (i.e., clusters). In clustering objects with many variables, it is quite
important to know if some of the variables do not contribute much to the cluster structure because redundant
information for clusters can make it difficult to recover the latent cluster structure. The dimension reduction
of variables is very useful to avoid the issue. Also, a lower-dimensional representation of the cluster structure,
which is given by the dimension reduction, provides huge benefits for interpretation and visualization of
the data. Recently, several techniques that achieve simultaneously clustering and dimension reduction of
categorical data have been proposed (Hwang et al, 2006; Iodice D’Enza et al., 2014; van de Velden et al., 2017).
These methods combine clustering and dimension reduction for categorical data by simultaneously assigning
individuals to clusters and optimal scaling values to categories in various ways. Although the methods may
provide good clustering recovery of the latent cluster structure and low-dimensional representation, the all
methods are based on the descriptive model such as multiple correspondence analysis. As is well known, the
probabilistic model for clustering, e.g., the mixture modeling, has many good points to analyze the data. In
this paper, we propose a novel simultaneous analysis of clustering and dimension reduction for categorical
data using the mixture modelling approch.

2 Proposed model

Let X = (X1, . . . ,XD)⊤ be a random vector of D categorical variables with C categories. M⊤ denotes the transpose
of a matrix (or a vector) M. Here, for notational simplicity, we assume that all variables can have C categories,
though it is possible to deal with data in which each variable has different categories, Cd. Suppose there are, in
fact, K latent (i.e., unobservable) classes in a population and let U = (U1, . . . ,UK)⊤ be an allocation variable that
allocates each observation to one out of the K classes. We assume the allocation variable follows a multinomial
distribution, i.e., the probability that U takes the value u = (u1, . . . ,uK)⊤ is

f (U = u) =
K∏

k=1

ξuk
k , (1)

where ξk = P(U1 = 0, . . . ,Uk = 1, . . . ,UK = 0).
Given that an observation is in the kth latent class, the probability that the random vector X takes the value

x = (x1, . . . , xD)⊤, where each of xd takes one of 1, . . . ,C, is P(X = x | Uk = 1), depending on a set of parameters.
The unconditional probability of the response x, when we do not know the latent class of the observation, is

P(X = x) =
K∑

k=1

ξkP(X = x | Uk = 1). (2)

Here we need to specify how the probability P(X = x | Uk = 1) depends on parameters. We postulate
that, given the latent class to which an observation belongs, the responses on the categorical variables are



independent:

P(X = x | Uk = 1) =
D∏

d=1

P(Xd = xd | Uk = 1). (3)

This assumption of conditional independence has been widely used in latent class modelling in sociology, and is
directly analogous to the assumption, in the factor analysis model, that observed variables are conditionally
independent given the factors.

Finally, to specify the model completely, we need to specify a set of parameters that define the conditional
probability of X, with the value of U given. Suppose that X1, . . . ,XN are i.i.d. copies of X, and entries of
X = (xnd) are those realizations. We assume that, given the class k, Xd follows the multinomial distribution with
success probabilities πkd1, . . . , πkdC. Here, we consider a canonical parameter vector θk = (θ⊤k1, . . . ,θ

⊤
kD)⊤, where

θkd = (θkd1, . . . , θkdC)⊤. Let Xnd be the dth element of Xn. Then, the individual data generating probability given
the class becomes

P(Xnd = xnd | Uk = 1) = P(Xnd = xnd | Uk = 1,θkd) =
C∏

c=1

πI(xnd=c)
kdc , (4)

where

πkdc =
exp(θkdc)∑C
l=1 exp(θkdl)

, (5)

and I(·) denotes an indicator function.
We aim to obtain a low-dimensional representation of multivariate categorical data, in which the true cluster

structure exists. Thus, we assume that canonical parameter θkdc has a low-rank representation as following

θkdc = µdc + f ′k adc, (6)

where, µdc ∈ R, and for some positive integer L ∈ Z+, fk ∈ RL and adc ∈ RL. Note that We write ξ = (ξ1, . . . , ξK)⊤,
µd = (µd1, . . . , µdC)⊤, µ = (µ⊤1 , . . . ,µ

⊤
D)⊤, F = ( f1, . . . , fK)⊤, Ad = (ad1, . . . ,adC)⊤, and A = (A⊤1 , . . . ,A

⊤
D)⊤. For

identifiability purpose, we require that F has orthonormal columns. Then the log likelihood can be written as

ℓ(ξ,µ,F,A) =
N∑

n=1

log

 K∑
k=1

ξk

D∏
d=1

C∏
c=1

 exp(θkdc)∑C
l=1 exp(θkdl)

I(xnd=c) (7)

The proposed model has rotational indeterminacy as same as the ordinary factor analysis model and
principal component analysis. Thus, to obtain an interpretable low-dimensional structure, it is needed to
conduct any orthogonal rotation methods like the Varimax rotation. Instead of the classical rotation methods,
we adopt sparse penalized maximum likelihood (ML) estimation to obtain the interpretable structure for A.
As described in Hirose and Yamamoto (2015) and Yamamoto et al. (2017), sparse penalization approach can
be considered as a generalization of the ordinary ML estimation with rotation methods. In addition, the
penalization can deal with high-dimensional problem if there is a sparse structure, i.e., most of the elements of
the true A are exactly zero.

Let P(·) be a sparsity-inducing function and ρ is a tuning parameter for sparsity. Then, we obtain sparse
cluster components by maximizing the following penalized log likelihood:

S(ξ,µ,F,A) = ℓ(ξ,µ, F,A) −N
D∑

d=1

C∑
c=1

L∑
l=1

ρP(|adcl|). (8)

We call this procedure the Clustering of CAtegorical data with Reducing the Dimensionality (CCARD). We
can interpret penalized maximization as the device for generating a suitable optimization function, but not a
realistic representation of the actual data-generating process. Thus, in this sense, the conditional independence
given the latent class for obtaining the likelihood in Eq. (7) is assumed.



3 Summary and conclusion

In this paper, a novel simultaneous procedure of clustering and dimension reduction for categorical data has
been proposed. The proposed method is based on the ordinary latent class analysis model, and provides
the low-dimensional representation of cluster structure. The low-dimensional representation of individuals is
given by the convex combination of the scores for cluster representatives. It has been shown that the difference
in the scores between individuals is related to the Jeffreys divergence for the response probability.

The parameters are estimated by maximizing the penalized ML. The EM-based optimization algorithm has
been proposed to solve the maximization problem. In the M-step, each parameter is estimated sequentially
by the block-wise coordinate descent. In addition, the convergence rate of the proposed algorithm has been
investigated.

From the simulation study and the real-world data example, it can be seen that the proposed model provides
better recoveries of latent cluster structures compared with existing methods. In the real-world data example,
the estimated weights A and the low-dimensional representation of clusters were actually helpful to understand
the latent cluster structure of the data.

In conclusion, the proposed simultaneous analysis model can help researchers in various research fields to
obtain and interpret the latent cluster structure in the categorical data.
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Introduction 

Post-transcriptional regulatory network of RNAs (micro-RNAs and mRNAs) plays a critical role in 

a biological system, and is one of the keys to understand how cells work. However, discovering RNA 

interactions is a big challenge due to significant experimental difficulties and lack of high quality 

predicting algorithms. Integrating sequence characteristics and expression profile of RNAs with a 

probabilistic model that fully considers competition among different RNA molecules, we propose 

WePro, a computational method that provides precise predictions on RNA interactions. 
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1 Summary

This paper addresses a necessary test for sphericity of which a distribution has invariance under trans-
formations by orthogonal matrices. Spherical distributions can be seen in many statical models for high
dimensional analysis. Fang, Zhu and Bentler (1993) and Cuesta-Albertos, Cuevas and Fraiman (2009)
proposed random projection methods for a sphericity test. In our presentation, we clarify that these
methods have less power for some alternative hypotheses and we also propose a necessary test based
on non-random projection. Numerical experiments are carried out for comparison between random and
non-random projection methods.

A p-dimensional random vector x is said to have a spherical distribution if Hx and x have the same
distribution for every p × p orthogonal matrices such that H ′H = HH ′ = Ip. We consider the null
hypothesis H0: x has a spherical distribution, versus the alternative hypothesis H1 : x doesn’t have a
spherical distribution. The null hypothesis can be changed into H∗

0 : u = x/∥x∥ is uniformly distributed
on p-dimensional sphere, as mentioned in Cuesta-Albertos et al.(2009). Based on a goodness-of-fit test,
we test H∗

0 by projection of u on a fix direction v = (1, . . . , 1)′/
√
p. We use u′v as a test statistic of

which the exact distribution F (z) is given as

F (z) =


0 z < −1,(
1 + sgn(z) Gp

(
z2| 1/2, (p− 1)/2

))
/2 |z| ≤ 1,

1 z > 1,

where sgn(x) is the sign function and Gp(x|α, β) is the cumlative distribution function of beta distribution
with parameters (α, β). See Iwashita, Klar, Amagai and Hashiguchi (2017) for details. Now, we consider
x ∼ Np(0,Σ) and H0 : Σ = Ip. An alternative test H1 : Σ = B′B is established by varying b in
B = (1 − b)Ip + bJ, where 0 < b < 1 and J is a matrix of ones. Tables 1 and 2 show Type I errors
(α = 0.05) and powers of FP Test (proposed), RP1-S and RP10-S based on 104 replicants. Here, RPk-S
(k = 1, 10) are refered in Cuesta-Albertos et al.(2009).

Table 1: p = 3, n = 20

H0 b = 0.2 b = 0.5

FP test 0.0501 0.3755 0.9927
RP1-S 0.0120 0.0148 0.0409
RP10-S 0.0174 0.0225 0.0640

Table 2: p = 50, n = 100

H0 b = 0.2 b = 0.5

FP test 0.0510 1.0000 1.0000
RP1-S 0.0405 0.3803 0.8056
RP10-S 0.0278 0.7746 0.9998
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High-throughput experimental data are accumulating exponentially in public 

databases. Unfortunately, however, mining valid scientific discoveries from these 

abundant resources is hampered by technical artifacts and inherent biological 

heterogeneity. The former are usually termed batch effects and the latter is often 

modeled by subtypes. Existing methods either tackle batch effects provided that 

subtypes are known or cluster subtypes assuming that batch effects are absent. 

Consequently, there is a lack of research on the correction of batch effects with the 

presence of unknown subtypes. Here, we combine a location-and-scale adjustment 

model and model-based clustering into a novel hybrid one, the Batch-effects-

correction-with-Unknown-Subtypes model (BUS). BUS is capable of correcting 

batch effects explicitly, grouping samples that share similar characteristics into 

subtypes, identifying features that distinguish subtypes, and enjoying a linear-order 

computational complexity. We prove the identifiability of BUS and provide 

conditions for study designs under which batch effects can be corrected. Finally, BUS 

is evaluated by simulation studies and a real breast cancer dataset. 



PERFORMANCE STUDIES OF TEST STATISTICS
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1. Introduction
Directional statistics has been studied as one of the major statistical topics in wind data or

monthly sales data that sometimes handle the directional objects in 2-dimentional space. In
the directional statistics, there are many test statistics.
Then, the von Mises distribution is commonly assumed as the sample distribution. It has 2

parameters: concentration κ and mean direction µ.

fvm(θ|µ, κ) =
exp{κ cos(θ − µ)}

2πI0(κ)
, (1)

0 ≤ θ < 2π, 0 ≤ µ < 2π, κ ≥ 0,

where Ij(κ) is the modified Bessel function of the first kind and order j. noted eq(2).

Ij(κ) =
1

2π

∫ 2π

0

cos(jx) exp(κ cosx)dx (2)

The follows show the distributions of κ = 0, 0.5, 1, 2 and 4.
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Figure 1: The behavior of κ
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Figure 2: The behavior of κ
on circular projection

For instance, Rayleigh test and V-test as tests for uniformity is often used. They are score
test statistic of this distribution of κ = 0. As the further improvement, we have derived the
LM test statistics for angular data. Our LM test statistic (Akimoto, Sakumura, & Kamakura,
2016) coincide with V-test when the support is on all semi-circumference.
In this paper, we derive the LM test statistic of the other hypothesis for some directional

data analysis.



2. Two-sample test
As the one of the most used testing, the two-sample test is also required. Then, let θ11, θ12, . . . , θ1n1

and θ21, θ22, . . . , θ2n2 , the independent random samples of sizes n1, n2 from von Mises distribu-
tion (µ1, κ1) and (µ2, κ2) respectively, the sample mean directions be θ̄1, θ̄2 and the resultant
lengths be R1, R2 respectively. The Rj is denoted that

Rj =

√√√√( n1∑
i=1

cos θji

)2

+

(
n1∑
i=1

sin θji

)2

= nR. (3)

As the two-sample testing from von Mises distribution (µ, κ), we focused on the mean directions
in this paper.

2.1 Test for equality of mean directions

The testing hypothesis H0 : µ1 = µ2, against H1 : µ2 ̸= µ2. Since each mean direction makes
resultant vector of the mean directions, cosine rule gives

R2 = R2
1 +R2

2 + 2R1R2 cos
(
θ̄1 − θ̄2

)
.

From this equation, Mardia(2009) described the likelihood test statistics with the known κ,

ω = 2κ (R1 +R2 −R) .

On the other hand, when κ is unknown, the distribution of statistic depends on κ. The likelihood
ratio statistic is

ω = 2 {κ̂12 (R1 +R2)− κ̂R− log I0(κ̂12) + log I0(κ̂))} ,

where κ̂ and κ̂12 are the MLEs of κ under H0 and H1 respectively.

3. Proposed statistic
In this section, we propose the LM test statistic for equality of mean directions. Suppose that

µ = µ1 = µ2, the MLEs of µj and κ be µ̂j = θ̄j and κ̂ = A−1
(
R
)
, where A (κ) = I1 (κ) /I0 (κ).

Thus, We calculated the LM test statistic for equality of mean directions,

A′(κ̂)κ̂2


n1

[
n1∑
i=1

sin (θ1i − µ̂)

]2
A′(κ̂)κ̂n1

n1∑
i=1

cos (θ1i − µ̂)−
[

n1∑
i=1

sin (θ1i − µ̂)

]2

+

n2

[
n2∑
i=1

sin (θ2i − µ̂)

]2
A′(κ̂)κ̂n2

n2∑
i=1

cos (θ2i − µ̂)−
[

n2∑
i=1

sin (θ2i − µ̂)

]2
 .
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